KIBABII UNIVERSITY ### UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR # FOURTH YEAR SECOND SEMESTER MAIN EXAMINATIONS FOR THE DEGREE OF B.SC (SCIENCE) **COURSE CODE:** SCH 321*/328 **COURSE TITLE:** **COORDINATION CHEMISTRY** **DURATION: 2 HOURS** DATE: 05/09/2022 **TIME**: 9:00AM-11:00AM #### INSTRUCTIONS TO CANDIDATES Answer **QUESTION ONE** (Compulsory) and any other two (2) Questions. Indicate answered questions on the front cover. Start every question on a new page and make sure question's number is written on each page. This paper consists of 5 printed pages. Please Turn Over KIBU observes ZERO tolerance to examination cheating ## Question One (30 Marks) | a)Define the following terms as used in coordination compounds | | | | | | |---|-------------------|--|--|--|--| | i. Ligandii. Ligand donor atom | 02] | | | | | | b) By giving appropriate examples, differentiate between monodentate ligands and polydentate ligands. | e
0 2] | | | | | | c) Complete the valence level orbital notation for the following monatomic ions. (See periodic table for Z values) | 03] | | | | | | a) Ag^+ b) Co^{3+} c) Fe^{3+} | | | | | | | d) For each of the following complexes, determine the number of ligands and the coordination number of the central metal. | će | | | | | | Coordination ion complex [Mn(EDTA)] ²⁻ [Co(en) ₂ (NH ₃)CN] ²⁺ | 031 | | | | | | | 03] | | | | | | e) Write down the molecular formulae of the following co-ordination compounds. [0] |)3] | | | | | | (i) Hexaammine iron (III) nitrate | | | | | | | (ii) Ammonium tetrachlorocuprate (II) | | | | | | | (iii) Sodium monochloropentacyanoferrate (III) | | | | | | | f) Write the IUPAC names of following compounds? | | | | | | | (i) [CoBr(NH ₃) ₅]SO ₄ | | | | | | | (ii) $[Fe(NH_3)_6][Cr(CN)_6]$ | | | | | | | (iii) $\left[\text{Co(SO}_4)(\text{NH}_3)_5\right]^+$ | | | | | | | j) State three factors that affect the magnitude of Δ_0 during d-splitting in complexes. [0.1] | | | | | | | k) Explain the meaning of the following terms as used to describe magnetic behaviour of | | | | | | inorganic materials. | i.ii.iv.l)i.ii.iii. | Paramagnetism Diamagnetism Ferromagnetism Antiferromagnetism How does temperature affect magnetic behavior of materials? Describe teGuoy's method of determining magnetic moment of a material. State oneadvantage and one disadvantage of using Guoy's method to determine the magnetic moment of a system. | [01]
[01]
[01]
[01]
[02]
[03]
ne
[02] | |---|---|--| | | Question two (20 Marks) | | | | Using Valence- bond theory, show that the complex ion $[Fe(CN)_6]^{3-}$ is octahedral paramagnetic. Calculate the paramagnetic dipole moment for the complex, given $\mu_B = \sqrt{n(n+2)}$. What are the limitations of valence-bond theory? The experimental gramme susceptibility (χ_g) for $K_4[MnCl_6].3H_2O$ is $3.38 \times 10^{-5}cgs$ at an approximate the paramagnetic dipole moment for the complex, given $\mu_B = \sqrt{n(n+2)}$. What are the limitations of valence-bond theory? The experimental gramme susceptibility (χ_g) for $K_4[MnCl_6].3H_2O$ is $3.38 \times 10^{-5}cgs$ at an approximate the paramagnetic dipole moment for the complex properties and $\mu_B = \sqrt{n(n+2)}$. | [07]
[02]
[02] | | ii.
iii. | Corrected molar experimental susceptibility (χ'_m) Magnetic moment of the complex (μ) (Use atomic masses C=12; N= 14; O=16; K=39 and Mn=55) (Diamagnetic correction factors: $K^+ = -14 \times 10^{-6} cgs$; $CI^- = -13 \times 10^{-6} cgs$; and $H_2O 10^{-6} cgs$) | [03]
[03] | | | Question three (20 Marks) | | | a) Whb) Is toc) Wo | mine the following for the complex ion: [Cu (en) ³] ²⁺ nat type of d-electron complex is it (for example: d ⁰ , d ¹ , d ² , etc.)? the ligand a strong field ligand or a weak field ligand build you expect the complex to be high spin or low spin that is the hybridization of the central metal? | [02]
[02]
[02]
[04] | 200 f) Draw the valence level orbital notation for the complex; circle the electrons that come from the ligands. [04] g) The table below shows the values of Δ_o for different metal ions with the same ligand | Complex ion | $[Co(NH_3)_6]^{3+}$ | $[Rh(NH_3)_6]^{3+}$ | $[Ir(NH_3)_6]^{3+}$ | |------------------|---------------------|---------------------|---------------------| | Δ_0 in KJ | 296 | 406 | 490 | Explain the variation in values of Δ₀ [02] i) The crystal field splitting energy of a complex is 2.9 x 10–19 J. i. What wavelength of light (in nm) would be absorbed for this d-d electronic transition? [03] ii. To what color of light does this wave length correspond? [01] iii. What color would a solution of this complex appear? [01] ### Question four (20 Marks) | a) | | ass the main postulates of the Crystal field theory. | [03] | | | | |--|---|---|------|--|--|--| | b) | b) State and explain any FOUR factors that affect the extend of Δsplitting according to | | | | | | | Crystal field theory. | | | | | | | | c) At room temperature, the observed value of $\mu_{effective}$ for [Cr(en) ₃]Br ₂ is 4.75Bm. | | | | | | | | | i. | What is the coordination number of this complex? | [01] | | | | | | ii. | What is the charge on the Chromium ion? | [01] | | | | | | iii. | Write the electronic configuration of the ion. | [01] | | | | | | iv. | Show whether this is a high spin or a low spin complex. | [04] | | | | | d) | What | is 'Jahn-teller distortion? | [02] | | | | | - | | | | | | |