

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

FOURTH YEAR SECOND SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF B.SC (SCIENCE)

COURSE CODE:

SCH 321*/328

COURSE TITLE:

COORDINATION CHEMISTRY

DURATION: 2 HOURS

DATE: 05/09/2022

TIME: 9:00AM-11:00AM

INSTRUCTIONS TO CANDIDATES

Answer **QUESTION ONE** (Compulsory) and any other two (2) Questions.

Indicate answered questions on the front cover.

Start every question on a new page and make sure question's number is written on each page.

This paper consists of 5 printed pages. Please Turn Over

KIBU observes ZERO tolerance to examination cheating

Question One (30 Marks)

a)Define the following terms as used in coordination compounds					
i. Ligandii. Ligand donor atom	02]				
b) By giving appropriate examples, differentiate between monodentate ligands and polydentate ligands.	e 0 2]				
c) Complete the valence level orbital notation for the following monatomic ions. (See periodic table for Z values)	03]				
a) Ag^+ b) Co^{3+} c) Fe^{3+}					
d) For each of the following complexes, determine the number of ligands and the coordination number of the central metal.	će				
Coordination ion complex [Mn(EDTA)] ²⁻ [Co(en) ₂ (NH ₃)CN] ²⁺	031				
	03]				
e) Write down the molecular formulae of the following co-ordination compounds. [0])3]				
(i) Hexaammine iron (III) nitrate					
(ii) Ammonium tetrachlorocuprate (II)					
(iii) Sodium monochloropentacyanoferrate (III)					
f) Write the IUPAC names of following compounds?					
(i) [CoBr(NH ₃) ₅]SO ₄					
(ii) $[Fe(NH_3)_6][Cr(CN)_6]$					
(iii) $\left[\text{Co(SO}_4)(\text{NH}_3)_5\right]^+$					
j) State three factors that affect the magnitude of Δ_0 during d-splitting in complexes. [0.1]					
k) Explain the meaning of the following terms as used to describe magnetic behaviour of					

inorganic materials.

i.ii.iv.l)i.ii.iii.	Paramagnetism Diamagnetism Ferromagnetism Antiferromagnetism How does temperature affect magnetic behavior of materials? Describe teGuoy's method of determining magnetic moment of a material. State oneadvantage and one disadvantage of using Guoy's method to determine the magnetic moment of a system.	[01] [01] [01] [01] [02] [03] ne [02]
	Question two (20 Marks)	
	Using Valence- bond theory, show that the complex ion $[Fe(CN)_6]^{3-}$ is octahedral paramagnetic. Calculate the paramagnetic dipole moment for the complex, given $\mu_B = \sqrt{n(n+2)}$. What are the limitations of valence-bond theory? The experimental gramme susceptibility (χ_g) for $K_4[MnCl_6].3H_2O$ is $3.38 \times 10^{-5}cgs$ at an approximate the paramagnetic dipole moment for the complex, given $\mu_B = \sqrt{n(n+2)}$. What are the limitations of valence-bond theory? The experimental gramme susceptibility (χ_g) for $K_4[MnCl_6].3H_2O$ is $3.38 \times 10^{-5}cgs$ at an approximate the paramagnetic dipole moment for the complex properties and $\mu_B = \sqrt{n(n+2)}$.	[07] [02] [02]
ii. iii.	Corrected molar experimental susceptibility (χ'_m) Magnetic moment of the complex (μ) (Use atomic masses C=12; N= 14; O=16; K=39 and Mn=55) (Diamagnetic correction factors: $K^+ = -14 \times 10^{-6} cgs$; $CI^- = -13 \times 10^{-6} cgs$; and $H_2O 10^{-6} cgs$)	[03] [03]
	Question three (20 Marks)	
a) Whb) Is toc) Wo	mine the following for the complex ion: [Cu (en) ³] ²⁺ nat type of d-electron complex is it (for example: d ⁰ , d ¹ , d ² , etc.)? the ligand a strong field ligand or a weak field ligand build you expect the complex to be high spin or low spin that is the hybridization of the central metal?	[02] [02] [02] [04]

200

f) Draw the valence level orbital notation for the complex; circle the electrons that come from the ligands. [04]

g) The table below shows the values of Δ_o for different metal ions with the same ligand

Complex ion	$[Co(NH_3)_6]^{3+}$	$[Rh(NH_3)_6]^{3+}$	$[Ir(NH_3)_6]^{3+}$
Δ_0 in KJ	296	406	490

Explain the variation in values of Δ₀ [02]
i) The crystal field splitting energy of a complex is 2.9 x 10–19 J.
i. What wavelength of light (in nm) would be absorbed for this d-d electronic transition? [03]
ii. To what color of light does this wave length correspond? [01]
iii. What color would a solution of this complex appear? [01]

Question four (20 Marks)

a)		ass the main postulates of the Crystal field theory.	[03]			
b)	b) State and explain any FOUR factors that affect the extend of Δsplitting according to					
Crystal field theory.						
c) At room temperature, the observed value of $\mu_{effective}$ for [Cr(en) ₃]Br ₂ is 4.75Bm.						
	i.	What is the coordination number of this complex?	[01]			
	ii.	What is the charge on the Chromium ion?	[01]			
	iii.	Write the electronic configuration of the ion.	[01]			
	iv.	Show whether this is a high spin or a low spin complex.	[04]			
d)	What	is 'Jahn-teller distortion?	[02]			
-						