

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2020/2021 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE:

MAA 212/MAT 223

COURSE TITLE:

DYNAMICS 1

DATE:

25/07/2022

TIME: 11 AM -1 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 6 Printed Pages. Please Turn Over.

QUESTION ONE (30 MKS)

- a) The position of a particle is given by a vector $r = (t^2 + t)i + (t^3 + 2t + 1)j + t^4k$ relative to a fixed frame S, If the origin of S' is moving a long a vector $R(t) = (t^3 + 3t + 1)i + (t^4 + 2t)j + t^5k$ relative to S. Determine (5mks)
 - i) r' ii) v'
- b) A sphere makes a complete revolution about its own axis in 10mins. If the velocity of any point on its diametrical circle is 100m/min. find the radius of the sphere. (4mks
- c) A rigid body is rotating with a constant angular speed 7 rads/sec about a fixed axis through the points A(2, 3, -1) and B (-4, 0, 1) distances being measured in centimeters. The rotation is left handed relative to \overrightarrow{AB} . Find the angular velocity vector of the body (5mks)
- d) The motion of a body rotating about the axis is defined as $\theta = 3t^3 18t^2 + 26t + 8$ where θ is angular position expressed in rad and t = T sec. Determine time (7mks)
 - i) When the angular velocity is 00
 - ii) The angular position and the total angular distance travelled when acceleration becomes 0.
- e) A rifle is aimed horizontally at a target 30m away. The bullet heats the target 1.9 cm below the aiming point.
 - i) What is the bullets time of flight (4mks)
 - ii) What is the muzzle velocity (3mks)
- f) Find the work done in moving an object along the vector r = 3i + 2j 5k if the applied force F = 2i j k (2mks)

QUESTION TWO (20MKS)

- a) A wheel starting from rest accelerates at the rate of 2 rad/s^2 for an interval of 10 sec. If it is then made to stop in the next 5 sec by applying brakes. Find
 - i) The maximum angular velocity attained (4mks)
 - ii) The total angle turned (4mks)
- b) Load P is connected to a string wrapped over a pulley. The load is lifted u with the help of belt. Find a unit vector parallel to $3\vec{A} 2\vec{B} + 4\vec{C}$. Given $\vec{A} = 3i j 4k$, $\vec{B} = -2i + 4j 3k$, $\vec{C} = i + 2j k$. (5mks)
- c) The position vector of a particle P is given by $r = (2t^2 3)i + (4t + 4)j + (t^3 + 2t^2)k$. Find (7mks)
 - i) The distance OP when t = 0
 - ii) The velocity of P when t = 1
 - iii) The acceleration of P when t = 2

QUESTION THREE (20MKS)

- a) Two ends P and Q of a rigid bar of length 5m slide along the y and x axis respectively. If the velocity of point P is 10m/s vertically downwards. Determine
 - i) The velocity of point Q
 - ii) Angular velocity of the rigid bar
 - iii) Velocity of point R when it makes an angle of 60° with the horizontal

QUESTION FOUR (20MKS)

A particle sliding a long a radial groove in a turn table has polar co- ordinates at time t, r = ct, and $\theta = 0$ twhere c and 0 are positive constants. Find the velocity and acceleration vectors of the particle at time t and find the speed of the particle at time t. Deduce that t > 0, the angle between the velocity and acceleration vectors are always acute. (12mks)

b) The angular acceleration of a body rotating about an axis is directly proportional to the time when t=0, the angular velocity of the body is -15rad/sec given that $\omega=0$ and $\theta=16$ rad when t=5 sec. Determine the equation of the motion of the body (8mks)

QUESTION FIVE (20MKS)

- a) A rigid body is rotating with a constant angular speed 7 rads/sec about a fixed axis through the points A(2, 3, -1) and B (-4, 0, 1) distances being measured in centimeters. The rotation is left handed relative to \overrightarrow{AB} . Find the instantaneous velocity, speed and acceleration of the particle P of the body at the point (-3,3 5) (12mks)
- b) A grinding wheel is attached to a shaft of an electrical motor of rated speed 1500rpm, when the power is switched on, the units attains the rated speed in 5 sec and when the power is switched off the unit comes to rest in 90 secs. Assuming uniform accelerated motion, determine the number of revolutions the unit turns. (8mks)
 - i) To attain the rated speed
 - ii) To come to rest