

(Knowledge for Development)

KIBABII UNIVERSITY UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR THIRD YEAR FIRST SEMESTER SPECIAL/SUPPLIMENTARY EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION AND

BACHELOR OF SCIENCE

COURSE CODE: MAP312/MAT 303

COURSE TITLE: LINEAR ALGEBRA III

DATE: 14/01/2022 TIME: 11:00 AM - 1:00 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

QUESTION ONE (30 MKS)

- (a). Define the following terms
 - (i). Diagonalizable matrix

(1 mk)

(ii). Unitary matrix

(1 mk)

(iii). Bilinear form

(3 mks)

(b). Prove that $\begin{bmatrix} 2 & i-1 & 2i \\ -1-i & 1 & i \\ -2i & -i & -3 \end{bmatrix}$ is a hermitian matrix.

(2 mks)

(c). (i). Define the complex vectors $u, v \in \mathbb{C}^3$ as

$$u = \langle 2 + i, 0, 4 - 5i \rangle, \quad v = \langle 1 + i, 2 + i, 0 \rangle.$$

Determine the Euclidean norms ||u|| and ||v||.

(4 mks)

- (ii). Let \mathbb{C}^n be a complex vector space where $u,v\in\mathbb{C}^n$. If \overline{u} and \overline{v} denotes the conjugates of u and v respectively, show that $\overline{u-v}=\overline{u}-\overline{v}$. (3 mks)
- (d). Let $T: V \to V$ be an operator whose characteristic polynomial $\Delta(t) = (t-4)^6$ and minimum polynomial $m(t) = (t-4)^3$. Determine all possible Jordan Canonical

forms for T.

(4 mks)

- (e). Determine the matrices P and D such that $D = P^{-1}AP$ where $A = \begin{bmatrix} 1 & -2 \\ 1 & 3 \end{bmatrix}$. (6 mks)
- (f).(i). What do you understand by the term, a quadratic form?

(2 mks)

(ii). Determine the definiteness of the quadratic form $Q(x_1,x_2,x_3)=3x_1^2+2x_2^2+3x_3^2-2x_1x_2-2x_2x_3$. (4 mks).

QUESTION TWO (20 MKS)

(a). Differentiate between algebraic and geometric multiplicity of an eigenvalue of a

matrix A.

(2 mks)

(b). (i). What is symmetric matrix?

(1 mks)

(ii). Orthogonally diagonalize matrix
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
 (17 mks)

QUESTION THREE (20 MKS)

- (a). Let A and B be an $n \times m$ and $m \times p$ complex matrices respectively. If \bar{A} and \bar{B} are complex conjugates of A and B respectively, prove that $\bar{\bar{A}} = A$ and $\bar{A}\bar{B} = \bar{A}\bar{B}$. (5 mks).
- (b). Prove that eigenvectors of a real symmetric matrix are orthogonal. (3 mks)
- (c). Show that $A=\frac{1}{2}\begin{bmatrix}1&-i&-1+i\\i&1&1+i\\1+i&-1+i&0\end{bmatrix}$ is a unitary matrix hence find its inverse.

(5 mks)

- (d). (i). Define an orthonormal set of vectors in \mathbb{R}^n . (2 mks)
- (ii). Prove that if A is an $n \times n$ orthogonal matrix, then the row as well as the column vectors of A forms an orthonormal set in \mathbb{R}^n with the Euclidean inner product. (5 mks)

QUESTION FOUR (20 MKS)

(a). (i). Define a nilpotent matrix hence show that
$$N = \begin{bmatrix} 0 & 2 & 1 & 6 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 (3 mks)

- (ii). Show that a matrix A is nilpotent if and only if all its eigenvalues are zero. (6 mks)
- (b). Find the orthogonal change of variable that eliminates the cross product term in the quadratic form $Q(x_1, x_2) = 8x_1^2 4x_1x_2 5x_2^2$ and expresses it in terms of new variables.

(6mks)

(c). Let U be unitary matrix. Prove that ||Ux|| = ||x|| hence $\langle Ux, Uy \rangle = \langle x, y \rangle$ for $x, y \in \mathbb{R}^n$. (5 mks)

QUESTION FIVE (20 MKS)

- (a).(i). Differentiate between orthogonal and Hermitian matrix. (2 mks)
 - (ii). Prove that an orthogonal matrix is Isometric. (4 mks)
- (b). Let λ be an eigenvalue of a real $n \times n$ matrix B, and x the corresponding eigenvector. Show that if $\bar{\lambda}$ is also an eigenvalue of B and \bar{x} is a corresponding eigenvector. (3 mks)

(c). Let P and Q be linear transformations on complex vector space V such that $P: V \to V$ and $V: V \to V$. Prove that $V: V \to V$ and $V: V \to V$ and V

(d). Prove that the real matrix $Q = \begin{bmatrix} p & -q \\ q & p \end{bmatrix}$ has the eigenvalues $\lambda = p \pm qi$ and if p and q are not all zeros, then $\begin{bmatrix} p & -q \\ q & p \end{bmatrix} = \begin{bmatrix} |\lambda| & 0 \\ 0 & |\lambda| \end{bmatrix} \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$ where θ is argument of λ . (6 mks)