

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2020/2021 ACADEMIC YEAR

FOURTH YEAR FIRST SEMESTER

SPECIAL/SUPPLIMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE:

MAT 401

COURSE TITLE:

TOPOLOGY I

DATE: 10/01/2022

TIME: 8:00 - 10:00 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (30marks)

- a). Define the following terms
 - i). An ϵ ball in a topological space

(2 Marks)

ii). A topological space

(3 Marks)

iii). A continuous function in a metric space

(2 Marks)

iv). A quotient topology

(2 Marks)

b). Prove that every finite set in a Hausdorff space X is closed

- (5 Marks)
- c). Define a cluster point hence show that any $a \in [0,1]$ is a cluster point.
- (5 Marks)
- d). Prove that if $f: X \to Y$ is a continuous function between two topological spaces X and Y then for every $A \in X$, $f(\bar{A}) \subseteq \overline{f(A)}$. (6 Marks)
- e). Define a homeomorphism hence show that any linear function is a homeomorphism from \mathbb{R} the usually topological space on \mathbb{R} to itself. (5 Marks)

QUESTION TWO (20marks)

- a). Let X be a metrizable topological space and $A \subset X$. Prove that if there is a sequence of points of A converging to x then $x \in \overline{A}$ (closure of A) and the converse is true. (8 marks)
- b). Consider the set $Y = (0,3) \cup (4,8]$
 - (i). Find the closure of (0,3) in Y and in \mathbb{R} .

(4 marks)

(ii). Find the interior of (4,8]

(2 marks)

(iii). Show that (0,3) is both closed and open.

(6 marks)

QUESTION THREE (20marks)

- a). (i). Let $X = \{a, b, c\}$ form two topologies τ_1 and τ_2 such that $\tau_1 \subset \tau_2$.
- (4 Marks)

(ii). Prove that indeed τ_2 is a topology.

- (4 Marks)
- c). Let X be a topological space. Prove that the following conditions holds
 - i). ϕ and X are closed

(2 Marks)

ii). Arbitrary intersection of closed sets are closed

(5 Marks)

iii). Finite union of closed sets are closed

(5 Marks)

QUESTION FOUR (20marks)

- a). Let (X, τ) be a topological spaces and $Y \subseteq X$ such that $\tau_Y = \{Y \cap U : U \in \tau\}$. Prove that τ_Y is a topology on Y hence, describe the basis of that topology with respect to that of τ . (10 Marks)
- b). Consider the set $Y = \{e, f, g\}$ and a topology on X defined by $\tau_X = \{\phi, \{f\}, \{g\}, \{e\}, \{e, f\}, \{g, f\}, \{g, e\}, Y\}$.
- (i). Find all neighborhoods of points e and g in Y. (4 marks)
- (iii). Find all the cluster points of the set $A = \{g\}$. (4 marks)
- c). What do you understand by the usual topology on \mathbb{R} . (2 marks)

QUESTION FIVE (20marks)

- a). Let (X, τ_f) a topological space where $\tau_f = \{U: U \subseteq X \mid X U \text{ is finite } . \text{ or all of } X\}$ Show that τ_f is a topology. (7 Marks)
- b). Let X and Y be topological spaces and $f: X \to Y$ a function. Show that if for every closed set $B \in Y$ the set $f^{-1}(B)$ is closed in X then f is continuous. (5 Marks)
- c). Define a Hausdorff space hence prove that any convergent sequence in a Hausdorff space has at most one limit (8 Marks)