

(Knowledge for Development) KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2020/2021 ACADEMIC YEAR

FOURTH YEAR FIRST SEMESTER

SPECIAL/SUPPLIMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND

BACHELOR OF SCIENCE

COURSE CODE:

MAT 427

COURSE TITLE: NUMERICAL ANALYSIS III

DATE:

11/01/2022

TIME: 8:00 AM - 10:00 AM

INSTRUCTIONS TO CANDIDATES Answer Question One and Any other TWO Questions

TIME: 2 Hours

QUESTION ONE (COMPULSORY)

(a) Solve the initial value problem

$$\dot{u} = -2tu^2, \ u(0) = 1,$$

Using

i. Forward Euler Method

(5marks)

ii. Midpoint Euler Method

(5marks)

With h = 0.2 over the interval [0,1]

(b) Given the Boundary Value Problem y'' + 2y = 0; y(0) = 1, $y(\pi) = 0$. Solve

(8 marks)

(c) Evaluate the integral $I = \int_0^1 \frac{dx}{1+x}$ using the Gauss-legendre two –point and three-point formulae.

(8marks)

(d) Evaluate the integral using series expansion method

(4marks)

$$I = \int_0^1 \frac{e^x}{\sqrt{x}} \, \mathrm{d}x$$

QUESTION TWO

(a) Solve the initial value problem $\dot{u}=2tu^2$, u(0)=1 with b=0.2 over the integral [0,1]. Use the forth order classical Runge –Kutta method. (20marks)

QUESTION THREE

(a) Solve $u_{xx} + u_{yy} = 0$ for the following square mesh with boundary conditions as shown in the figure below and their corresponding u_n^1 (10marks)

0	11.1	17	19.7	18.6
0	u_1	u_2	u_3	21.9
0	u_4	u_5	u_6	21
0	u_7	u_{g}	u_9	17
0	8.7	12.1	12.8	9

(b) Given the Initial Value Problem $u' = t^2 + u^2$, u(0) = 0. Determine the first 3 non-zero terms in the Taylor series for u(t) and hence get the value of u(1). Also determine when the error in u(t) obtained from the first two non-zero terms is to be less than 10^{-6} after rounding off. (10mks)

QUESTION FOUR

Evaluate
$$I = \int_{1}^{2} \int_{1}^{2} \frac{dxdy}{x+y}$$

Using trapezoidal rule with

i. h = k = 0.5 (10marks) ii. h = k = 0.25 (10marks)

and modify the results using Romberg formulae

QUESTION FIVE

Solve the heat equation

 $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ subject to the initial and boundary conditions $u(x,0) = e^{-x^2 t} \sin \pi \ x, 0 \le x \le 1$ u(0,t) = u(1,t) = 0

Using the following methods

(i)The Schmidt method(6marks)(ii)The laasonen method(7marks)(iii)The Crank-Nicklson method(7marks)