

(Knowledge for Development)

KIBABII UNIVERSITY 2621/2022 ACADEMIC YEAR

UNIVERSITY EXAMINATIONS SPECIAL/SUPPLEMENTARY EXAMINATIONS YEAR ONE SEMESTER ONE EXAMINATIONS

FOR THE DEGREE OF (COMPUTER SCIENCE)

COURSE CODE: CSC 113

COURSE TITLE: ELECTRONICS

DATE: 25/07/2022

TIME: 02.00 P.M. - 04.00 P.M.

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE AND ANY OTHER TWO (2) QUESTIONS

QUESTION ONE (COMPULSORY) [30 MARKS]

[4mks]

[2mks]

[2mks]

a) Describe the phenomenon of avalanche and zener breakdown.

b) Draw the schematic of a pn-junction diode

(i) Forward-biased mode.

(ii) reverse-biased mode

	Show in each case the polarity of voltage source (positive and negative terminal of the source current direction.) and the
c) d)		[3mks] slope [4mks]
g) f)	the diode used here [10mks] What is intrinsic semiconductor? How do we make it extrinsic semiconductor, and who	3]
a)	QUESTION TWO [20 MARKS] In the circuit diagram given, a volt meter is connected across a lamp, what changes would at lamp"L" and voltmeter "V", if the resistor R is reduced in value? Give reason(s) for you answer?	
b)	Draw the circuits to obtain the input and output characteristics of an NPN transistor configuration. [10mks	
ĉ)	With the aid of diagrams differentiate between CE, CB and CC configurations of State the applications of each configuration	BJT's [6mks]
a)	QUESTION THREE [20 MARKS] Sketch the CE-configuration transistor output characteristics of a transistor and explain significance of these curves. Indicate the active, cut-off and saturation regions. [10mks]	
b)	State any FOUR differences between FET and BJT transistors.	[4mks]
c)	Distinguish between majority and minority carriers in a semiconductor. Define mobility of	
	charge carriers.	[6mks]

- a) Discuss how a depletion layer is formed in a P-N junction and how does it vary with biasing? Draw V-I characteristics of P-N junction diode.
- b) Explain the principle of operation of LED and outline the materials used for it. [12mks] [8mks]

- a) Describe Zener diode and briefly explain how it regulates the voltage? What happens to the series current, load current and zener current when the d.c. input voltage of a zener regulator
- b) (i) For the series circuit shown determine V_D, V_R, and I_D.

[7mks]

[3mks]

(ii) Suppose the diode in e(i) is reversed, determine V_D, V_R, and I_D.

[3mks]

c) Explain the conduction of current in a good conductor. Why does a conductor have low [7mks]