

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2021/2022 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER

SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF MASTER OF SCIENCE IN PURE **MATHEMATICS**

COURSE CODE:

MAT811

COURSE TITLE: ABSTRACT INTEGRATION I

DATE: 25/07/2022

TIME: 8:00 AM - 10:00 AM

Answer Any other THREE Questions

TIME: 2 Hours

QUESTION ONE (20 MARKS)

- a) Define the following terms
 - i. Ring
 - ii. σ -Ring
 - iii. Algebra
 - iv. σ Algebra
 - v. Family
- b) Show that if $f: X \to Y$ and ρ is a σ -Ring of subsets of X, then the class of all sets $B \subset Y$ such that $f^{-1}(B)$ is in ρ , is a σ -Ring of subsets of Y
- c) Show that if R is a ring of subsets of a set X, then M(R) = G(R)

QUESTION TWO (20 MARKS)

- a) State the Lemma on Monotone classes (LCM)
- b) Define the following terms
 - i. Set function
 - ii. Additive
 - iii. Measure
 - iv. Continuous from below
- c) Show that if R is a ring and μ is an extended real valued set function on R which is positive, countably additive and satisfies the condition $\mu(\emptyset) = 0$, then μ is a measure

QUESTION THREE (20 MARKS)

- a) Show that if v is an outer measure, the class M of v-measurable sets is a ring
- b) Let R be a ring, and suppose that μ_1 and μ_2 are measures on the σ -Ring G(R) generated by R such that $\mu_1(E) = \mu_2(E)$ for all E in R. Assume moreover, that the restriction of μ_1 to R is σ -finite, then show that $\mu_1 = \mu_2$ on G(R)

QUESTION FOUR (20 MARKS)

- a) Define the following terms
 - i. Measurable space
 - ii. Locally measurable
 - iii. Measurable function f
 - iv. Characteristic function
 - v. Borel measurable

- a) Show that if $f: X \to \mathbb{R}$ is a function such that N(f) is measurable, then each of the following conditions is necessary and sufficient for the measurability of f:
 - $\{x: f(x) < c\}$ is locally measurable for each real number c
 - $\{x: f(x) \le c\}$ is locally measurable for each real number c
 - $\{x: f(x) > c\}$ is locally measurable for each real number c
 - $\{x: f(x) \ge c\}$ is locally measurable for each real number c iv.
- b) Show that if f and g are measurable, then f + g is also measurable

QUESTION FIVE (20 MARKS)

- Show that if f and g are simple functions, c is a real number and A is a locally measurable set, then all of the following are simple

 - iii. |f| iv. $f \cup g$
 - v. $f \cap g$
 - vi. f^+, f^-
 - vii. $\chi_A f$
 - viii. fg
- b) Show that if f is a measurable function, c is a real number and c > 0, then $f \cap c$ is a measurable function
- Show that if f is a measurable function, then there exists a sequence of simple functions f_n such that f_n converges to f pointwise on X, that is, $f_n(x) \to f(x)$ for each x in X. If moreover, $f \ge 0$ one can make $0 \le f_n \uparrow f$