

(Knowledge for Development)

KIBABII UNIVERSITY UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR SECOND YEAR SUPPLEMENTARY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

MATHEMATICS

COURSE CODE:

MAT 252

COURSE TITLE:

ENGINEERING MATHEMATICS II

DATE: WED 27/07/2022

TIME: 2:00 PM - 4:00 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

QUESTION ONE (30 MARKS): COMPULSORY

a) A particle moves so that its position vector is given by $\vec{r} = 2\cos\omega t \, i + 2\sin\omega t \, j$,

where ω is a constant. Show that the velocity \overrightarrow{v} of the particle is perpendicular

(5 marks)

b) If
$$B = 3z^2 + 4i$$
, find Laplacian of B (5 marks)

c) If
$$\phi(x, y, z) = 3x^2y - y^3z^2$$
, find $\nabla \phi$ at the point $(1, -2, -1)$. (5 marks)

d) Show that for the complex variable
$$z$$
 the following formula is valid:
 $\sin 2y = 2 \sin y \cos y$ (5 marks)

e) Find
$$\nabla \phi$$
 if $\phi = \frac{1}{r}$. (5 marks)

f) Find the work done in moving a body along a straight line from (5,3,-1) to

(3,-2,2) in a force field given by
$$\vec{F} = 2i - j + 4k$$
. (5 marks)

QUESTION TWO (20 MARKS)

to \vec{r} .

a) Classify according to type and determine the characteristics of the following p.d.e: $2u_{xx} - 4u_{xy} - 6u_{yy} + u_x = 0$ (6 marks)

b) Calculate
$$e^z$$
 when $z = 1 + \frac{\pi}{4}i$ (5 marks)

c) If
$$\vec{F} = (2xy + z^3)i + x^2 j + 3xz^2 k$$

(ii) Find the work done in moving an object in this field from (1,-2,1) to (3,-1,4) (4 marks)

QUESTION THREE (20 MARKS)

a) If
$$U = a + ib$$
 and $V = c + id$, prove that $\overline{UV} = \overline{U} \times \overline{V}$ (6 marks)

b) Prove that
$$u = e^{-x} (x \sin y - y \cos y)$$
 is harmonic (5 marks)

c) A particle moves along a curve whose parametric equations are $x = e^{-t}$, $y = 3\cos 2t$, $z = 3\sin 2t$, where t is time. Determine:

(i) Velocity at time
$$t$$
 (5 marks)

(ii) Acceleration at time
$$t$$
 (4 marks)

QUESTION FOUR (20 MARKS)

- a) Show that the function $f(x) = x^2 y^2 2ixy$ is analytic in the entire complex plane (8 marks)
- b) Given that: $\phi = 2x^3y^2z^4$, find $\nabla \cdot \nabla \phi$ (6 marks)
- c) Find the following: $2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) \cdot 3\left(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12}\right)$ (6 marks)

QUESTION FIVE (20 MARKS)

- a) A scalar field v = xyz exists over a curved surface defined by $x^2 + y^2 = 4$ between the planes z = 0 and z = 3 in the first octant. Evaluate $\int_s^s vds$ over this surface. (6 marks)
- b) Find the Fourier series representing $f(x) = x : 0 \le x \le 2\pi$ (8 marks)
- c) If $\overrightarrow{A} = xz^3 i 2x^2 yz j + 2yz^4 k$, find $\nabla \times \overrightarrow{A}$ at the point (1,-1,1). (6 marks)