

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR SECOND YEAR SECOND SEMESTER SPECIAL/SUPPLEMENTARY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE: MAT 222/MAA 221

COURSE TITLE: CALCULUS III

DATE:

27/07/2022

TIME: 2 PM -4 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

QUESTION ONE (30 MARKS)

- a) Define the following terms
 - (i) Local minimum

(2 mks)

(ii) Local maximum

(2 mks)

- b) Evaluate $\lim_{(x,y)\to(0,0)} \frac{x^2 xy}{\sqrt{x} \sqrt{y}}$ (4 mks)
- c) Suppose x is a differentiable function near each (x, y) for the equation $zsiny + x^2z 2e^{xyz} = 11$ find $\frac{\partial z}{\partial y}$ (3mks)
- d) The production function is given by f(x, y) = 4xy maximize the this function subject to budget constraint x 2y = 10 (5 mks)
- e) Find the radius and interval of convergence of the series $\sum_{n=1}^{\infty} \frac{(-2)^n (x-3)^n}{n5^{n-1}}$ (5 mks)
- f) Find the volume in the 1st octant between the planes z = 0, and z = 2x y + 3And inside the cylinder $x^2 + y^2 = 9$ (5 mks)
- g) Verify that the Tailor series expansion for the function f(x) = sinx about x = 0 is $sinx = \sum_{n=0}^{\infty} \frac{(-1)^n (x)^{2n+1}}{(2n+1)!}$ hence find the Maclaurin series for f(x) = 2xsinx (6 mks)

QUESTION TWO (20 MARKS)

- a) For what values does the series converge $\sum_{n=1}^{\infty} \frac{(x-2)^n}{n}$ (4 mks)
- b) Consider the series $\sum_{k=1}^{\infty} \frac{(-3)^{k-1} 2^k}{3k^2}$ use ratio theorem to show that the series diverges (4 mks)
- c) Find the area of the portion of the cone $x^2 + y^2 = 2z^2$ lying above the xy-plane and inside the cylinder $x^2 + y^2 = 4y$ (6 mks)
- d) An open cylinder has a surface area of 162.34 cm² Find the radius and the height that will yield minimum volume (6 mks)

QUESTION THREE (20 MARKS)

a) Use the 1st principles to determine $\frac{\partial f}{\partial y}$ given that $f(x,y) = 2xy - y^2 - 3xy^3$

(4 mks)

b) Let $f(x, y, z) = x \ln(xy) - e^{x^2z} + 3\cos(xyz)$. Find

(i)
$$f_{xx}$$
 (2 mks)

(ii)
$$f_{xyz}$$
 (3 mks)

c) Evaluate
$$\int_0^\pi \int_0^{\frac{\pi}{4}} \int_0^{\sin y} 4\sin z \cos y dx dy dz$$
 (5 mks)

d) Locate and classify all critical points of $f(x_1, x_2) = 3x_1^2 - x_2^3 - 6xy$ (6 mks)

QUESTION FOUR (20 MARKS)

a) Investigate the convergence of
$$\sum_{k=0}^{\infty} \frac{(-3)^k e^k}{k!}$$
 (6 mks)

b) Use the Lagrange multipliers to find the local extrema of the function $f(x,y) = y^2 - 4x$ Subject to $x^2 + y^2 = 25$ (7 mks)

c) Locate any relative extreme points and determine their nature for the function $f(x, y, z) = -2x^3 + 6xz + 2y - y^2 - 6z^2 + 3$ (7 mks)

QUESTION FIVE (20 MARKS)

a) Let
$$z = e^{3x} siny$$
 and $x = s^2 t^2 - 2t$ and $y = s^3 - 4t$ find $\frac{\partial z}{\partial t}$ and $\frac{\partial z}{\partial s}$ (7 mks)

b) If
$$R = \{x, y \mid 1 \le x \le 2 \text{ and } 0 \le y \le 3\}$$
 evaluate $\iint_R (-4xy^2 - 2x^3y + 3)dA$ (3 mks)

c) Find the volume of the solid bounded by the graphs of $z = 4 - y^2$, x - z = 2, x = 0, and z = 0 (5 mks)

d) Consider the series $S_n = \frac{1}{\sqrt{2n-1}}$ using the integral test, determine whether the series converges or diverges (5 mks)