

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR

END OF SEMESTER EXAMINATIONS THIRD YEAR FIRST SEMESTER SPECIAL/ SUPPLEMENTARY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

MATHEMATICS

COURSE CODE:

MAA 314

COURSE TITLE:

METHODS I

DATE: 13/01/2022

TIME: 2:00 – 4:00 PM

INSTRUCTIONS

Answer Questions ONE and Any other TWO

QUESTION ONE [30MKS]

a. Show that
$$\Gamma(x+1) = \Gamma(x)$$
 (3mks)

b. Determine
$$L^{-1} \left\{ \frac{4s^2 - 5s + 6}{(s+1)(s^2 + 4)} \right\}$$
 (5mks)

- c. Obtain half range cosine series to represent the function f(x) = 2x defined over $0 < x < \pi$ for $f(x + 2\pi) = f(x)$ (6mks)
- d. Show that if $z = \frac{x}{y} \ln y$, then $\frac{\partial z}{\partial y} = x \frac{\partial^2 z}{\partial y \partial x}$ (3mks)

e. Use special functions to evaluate
$$\int_{0}^{1} x^{4} (1-x^{2})^{\frac{1}{2}} dx$$
 (4mks)

- f. Find the singular point for $2x^2y''-xy'+(1-x)y=0$ and show if the equation can be solved using Frobenius method. (4mks)
- g. Find the 1st three nonzero terms for the Legendre series

$$f(x) = \begin{cases} 0; & -1 \le x \le 1 \\ 1; & 0 \le x \le 1 \end{cases}$$
 (5mks)

QUESTION TWO [20MKS]

a. Evaluate
$$\int_{0}^{1} \ln\left(\frac{1}{x}\right)^{\frac{3}{2}} dx$$
 (4mks)

b. Prove that
$$B(m, n) = \frac{\Gamma m \Gamma n}{\Gamma (m+n)}$$
 (6mks)

c. solve the Legendre's differential equation $(1-x^2)y'' - 2xy' + 6y = 0$ (10mks)

QUESTION THREE

- a. Transform the following differential equation into a Legendre equation by letting $x = \cos \theta$ (7mks)
- b. Derive the duplication formula and use it to find $\Gamma(3\frac{1}{2})$ (6mks)
- c. Find the solution of $\frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} = 0$ (7mks)

QUESTION FOUR [20MKS]

a. Evaluate
$$\int_0^\infty \sqrt{z} \, e^{-z^3} dz \tag{3mks}$$

b. Use Laplace transform to solve (7mks)

i.
$$3\dot{x} - 4x = \sin 2t$$
 at $t = 0$, $x = \frac{1}{3}$

c. Find the general solution of the equation

$$9x^{2}y'' + 9xy' + (9x^{2} - \frac{1}{4})y = 0$$
 (5mks)

d. Find the Fourier series for the given function. (5mks)

QUESTION FIVE [20MKS]

a. Prove that
$$J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x$$
 (5mks)

b. Expand the following functions in Legendre series $f(x) = P_3'(x)$ (5mks)

c. Sol Solve the differential equation following using the power series (10mks)

$$y' - 2xy = 0$$