

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER SUPPLEMENTARY EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE:

SCH 122

COURSE TITLE: ANALYTICAL CHEMISTRY

DURATION: 2 HOURS

DATE:

28/07/2022

TIME: 2:00PM-4:00PM

INSTRUCTIONS TO CANDIDATES

Answer QUESTION ONE (Compulsory) and any other two (2) Questions.

Indicate answered questions on the front cover.

Start every question on a new page and make sure question's number is written on each page.

This paper consists of 4 printed pages. Please Turn Over

Question 1

- a) Outline **Eight** steps in an overall analytical procedure. (4marks)
- b) Sate four applications of analytical chemistry. (4 marks)
- c) Give three types of systematic (determinate) errors in analytical chemistry. (3marks)
- d) Define the terms precision and accuracy as they are used in analytical chemistry. (2marks)
- e). The concentration of an additive in a standard sample of gasoline was measured 5 times with the following results: 0.13, 0.11, 0.12, 0.20, and 0.14 % by mass.
 - i. Determine the median and mean (4marks)
 - ii. Standard deviation of the data. (4marks)
 - iii. If the accepted mean value for the standard sample is 0.11 % by mass, are the results for this set of measurements significantly different at the 95% confidence level by the *t*-test?

 (3marks).
- f) State three applications of statistics to data treatment and evaluation in analytical chemistry (3marks)
- g) State three factors that are important in determining the magnitude of break in titration curve at end point.

 (3marks)

Question 2

- a) Giving one example in each, distinguish between the following;
 - i. Bronsted- Lowry acid and Lewis acid (4marks)
 - ii. Binary acids and oxo-acids (4marks)
- b) State four limitations of Lewis Concept. (4marks)
- c) Calculate the pH if 1 mL of 13.6 M HCl is diluted with water to give 1 L of solution. (4mks)
- d) Explain any two factors in determining the relative acidity of an organic acid (4marks)

Question 3

- a) Explain the following;
 - i. Triprotic acid, H_3PO_4 has K_{al} is 7.5×10^{-3} and K_{a2} is 6.2×10^{-8} . (2 marks)
 - ii. CH₃NH₂ is a stronger base than NH₃ (2marks)
- b) If the solubility product of lead(II) chloride is 1.71 x 10⁻⁵ mol³ dm⁻⁹ at 298 K, calculate its solubility in mol dm⁻³ at that temperature. (4marks)
- c)A solution is prepared by mixing 0.10 L of 0.12 M sodium chloride with 0.23 L of a 0.18 M Magnesium Chloride solution. What volume of a 0.20 M silver nitrate solution is required to precipitate all of the chloride ion as silver chloride? (4marks)

- e) The % by mass of Γ in a 0.6712g sample was determined by a Volhard titration. After adding 50.0 mL of 0.05619 M AgNO₃ and allowing the precipitate to form, the remaining silver was back titrated with 0.05322 M KSCN, requiring 35.14 mL to reach the end point. Calculate the %by mass of Γ in the sample. (5marks)
- f) State three ways by which the selectivity of an ion of interest from a mixture of metal ions is increased. (3marks)

Question 4

a) What is a chelating agent?

(1mark)

- b) Explain giving one example in each what is meant by each of the following terms (4marks)
 - i coordination number
 - ii. monodendate ligand
- c) Write the structural formula of the following complexes

(4 marks)

- i. chloro pentaaqua chromium (III) ions
- ii. hexacyano vanadate (III)ions
- iii. sulphatopentaamine cobalt (III) ions
- iv. pentacyanonitrosylferrate (II) ions
- d) Explain FOUR types of Complexometric Titrations

(8 marks)

e) State any three factors influencing EDTA reactions

(3 marks)

Question 5

(a) What is solvent extraction?

(1mark)

- (b)Extraction has widely been used in modern analysis for separating and concentrating elements. State any two advantages of extraction. (2marks)
- (c) succinic acid was shaken up with a mixture of water and ether. The concentrations of the acid in the two layers are as follows per 10 ml of solution.

In water layer	0.0244	0.071	0.121
In ether layer	0.0046	0.013	0.022

i. Find out the distribution coefficient in each case.

(6marks)

ii. Calculate the average distribution coefficient.

(2mark)

(d) Match the terms in the first list with the characteristics in the second list;

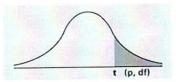
(5marks)

	Type of chromatography	Characteristics
1	adsorption	Ions in mobile phase are attracted to counterions attached to stationary phase.
2	partition	Solute in mobile phase is attracted to specific groups covalently attached stationary phase.
3	Ion exchange	Solute equilibrates between mobile phase and film of liquid attached to stationary phase.
4	Size exclution	Different size solutes penetrate voids in stationary phase and large solutes eluted first.
5	affinity	Solute equilibrates between mobile phase and surface of stationary phase

e) Explain the basic principle of electrophoresis

(4marks)

F Distribution Tables


1	$df_1=1$	2	3	4	5	6	7	8	9	10	12
df ₂ =1	161.4476	199.5000	215.7073	224.5832	230.1619	233.9860	236.7684	238.8827	240.5433	241.8817	243.9060
2	18.5128	19.0000	19.1643	19.2468	19.2964	19.3295	19.3532	19.3710	19.3848	19.3959	19.4125
3	10.1280	9.5521	9.2766	9.1172	9.0135	8.9406	8.8867	8.8452	8.8123	8.7855	8.7446
4	7.7086	6.9443	6.5914	6.3882	6.2561	6.1631	6.0942	6.0410	5.9988	5.9644	5.9117
5	6.6079	5.7861	5.4095	5.1922	5.0503	4.9503	4.8759	4.8183	4.7725	4.7351	4.6777
6	5.9874	5.1433	4.7571	4.5337	4.3874	4.2839	4.2067	4.1468	4.0990	4.0600	3.9999
7	5.5914	4.7374	4.3468	4.1203	3.9715	3.8660	3.7870	3.7257	3.6767	3.6365	3.5747
8	5.3177	4.4590	4.0662	3.8379	3.6875	3.5806	3.5005	3.4381	3.3881	3.3472	3.2839
9	5.1174	4.2565	3.8625	3.6331	3.4817	3.3738	3.2927	3.2296	3.1789	3.1373	3.0729
10	4.9646	4.1028	3.7083	3.4780	3.3258	3.2172	3.1355	3.0717	3.0204	2.9782	2.9130
11	4.8443	3.9823	3.5874	3.3567	3.2039	3.0946	3.0123	2.9480	2.8962	2.8536	2.7876
12	4.7472	3.8853	3.4903	3.2592	3.1059	2.9961	2.9134	2.8486	2.7964	2.7534	2.6866

Critical values for Dixon's Q-Test for 3 different confidence levels

I	N	ļ	Q90%	1	Q95%	1	Q99%	1
1	3	-1.	0.941	- -	0.97	- -	0.994	-
Í	4	İ	0.765	Î	0.829	ĺ	0.926	1
1	5	ĺ	0.642	Ï	0.71	1	0.821	1
1	6	1	0.56	1	0.625	1	0.74	1
1	7	1	0.507	1	0.568	1	0.68	1
1	8	1	0.468	1	0.526	1	0.634	1
1	9	1	0.437	1	0.493	E	0.598	1
1	10	1	0.412	1	0.466	1	0.568	1
1	11	1	0.392	1	0.444		0.542	1
ï	12	1	0.376	Ĩ	0.426		0.522	1

<u>t-DistributionTable</u>

df/p	0.40	0.25	0.10	0.05	0.025	0.01	
1	0.324920	1.000000	3.077684	6.313752	12.70620	31.82052	
2	0.288675	0.816497	1.885618	2.919986	4.30265	6.96456	
3	0.276671	0.764892	1.637744	2.353363	3.18245	4.54070	
4	0270722	0.740697	1.533206	2.131847	2.77645	3.74695	
5	0.267181	0.726687	1.475884	2.015048	2.57058	3.36493	
6	0.264835	0.717558	1.439756	1.943180	2.44691	3.14267	
7	0.263167	0.711142	1.414924	1.894579	2.36462	2.99795	
8	0.261921	0.706387	1.396815	1.859548	2.30600	2.89646	
9	0.260955	0.702722	1.383029	1.833113	2.26216	2.82144	
10	0260185	0.699812	1.372184	1.812461	2.22814	2.76377	
11	0259556	0.697445	1.363430	1.795885	2.20099	2.71808	
12	0259033	0.695483	1.356217	1.782288	2.17881	2.68100	
13	0.258591	0.693829	1.350171	1.770933	2.16037	2.65031	
14	0.258213	0.692417	1.345030	1.761310	2.14479	2.62449	
15	0.257885	0.691197	1.340606	1.753050	2.13145	2.60248	
16	0257599	0.690132	1.336757	1.745884	2.11991	2.58349	
17	0.257347	0.689195	1.333379	1.739607	2.10982 2.10092 2.09302 2.08596	2.56693 2.55238 2.53948 2.52798	
18	0.257123	0.688364	1.330391	1.734064 1.729133			
19	0.256923	0.687621	1.327728				
20	0.256743	0.686954	1.325341	1.724718			
21	0.256580	0.686352	1.323188	1.720743	2.07961	2.51765	
22	0256432	0.685805	1.321237	1.717144	2.07387	2.50832	
23	0256297	0.685306	1.319460	1.713872	2.06866	2.49987	
24	0.256173	0.684850	1.317836	1.710882	2.06390	2.49216	
25	0.256060	0.684430	1.316345	1.708141			
26	0.255955	0.684043	1.314972			2.47863	
27	0.255858	0.683685	1.313703	1.703288	2.05183	2.47266	
28	0.255768	0.683353	1.312527	1.701131	2.04841	2.46714	
29	0.255684	0.683044	1.311434	1.699127	2.04523	2.46202	
30	0.255605	0.682756	1.310415 1.697261 2.		2.04227	2.45726	
z	0.253347	0.674490	1.281552	1.644854	1.95996	2.32635	
CI			80%	90%	95%	98%	