

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER SPECIAL/SUPPLEMENTARYEXAMINATIONS

FOR THE DEGREE OF BACHELOR OF SCIENCE IN PHYSICS

COURSE CODE:

SPC 323

COURSE TITLE:

MATHEMATICAL PHYSICS II

DURATION: 2 HOURS

DATE: 20/1/2022

TIME: 11-1PM

INSTRUCTIONS TO CANDIDATES

- Answer QUESTION ONE (Compulsory) and any other TWO (2) Questions.
- Ouestion ONE carries 30 MARKS and the remaining carry 20 MARKS each.
- ALL Symbols have their usual meaning

QUESTION ONE (30MARKS)

- a) Use complex analysis to evaluate
 - i) $(1+i)^{8}$

(5marks)

ii) $\left(\frac{1+\sqrt{3}i}{1-\sqrt{3}i}\right)^{10}$

(5marks)

b) i) Show that a complex function f(z) is analytic at z_0 in R

- (3marks)
- ii) Show that a complex function f(z) is analytic at z_0 in Rii) Show that $f(z) = z^*$ is continuous at z_0 but $\frac{dz^*}{dz}$ does not exist
- (4marks)
- c) Show that if f(z) = u(x, y) + i(x, y) the complex line integral can be expressed as a real integral (4marks)
- d) Show that the Cauchy-Riemann conditions hold for $f(z) = z^2$ at all points. (4marks)
- e) Define the gamma function $\sqrt{(p)}$

(1mark)

f) Determine if the following series converge $\sum_{n=0}^{\infty} (\log_{\pi} 2)^n$

(4marks)

(6marks)

QUESTION TWO (20MARKS)

- a) Write down the relationship between the Beta and gamma function and use it to evaluate $\int_0^\infty \frac{x^3}{(1+x)^5} dx$ (5marks)
- b) Write down the Rodrigue's formula and hence generate the first three Legendre polynomials (5marks)
- c) Evaluate the integral $\int_C (Z^*)^2 dz$ where C is a straight line joining the points z = 0 and z = 1 + 2i (5marks)
- a) Use the Laplace transform of the first derivative to show that $\mathcal{L}\{e^{-at}\} = \frac{1}{s+a}$ (5marks)

QUESTION THREE (20MARKS)

- a) Use the Laplace transform tables to work out $\mathcal{L}\{3\sin^2 x\}$
- b) Show that the complex sequence whose n^{th} term is $Z_n = \frac{n^2 2n + 3}{3n^2 4} + i\frac{2n 1}{2n + 1}$ converges to $\frac{1}{3} + i$ (4marks)
- c) Use the calculus of residues to show that $\int_0^{2\pi} \frac{\cos 2\theta}{5 + 4\cos \theta} d\theta = \frac{\pi}{6}$ (10marks)

QUESTION FOUR (20MARKS)

- a) Use the calculus of residues to show that $\int_0^{2\pi} \frac{d\theta}{a + b \cos \theta} = \frac{2\pi}{\sqrt{a^2 b^2}}$ where a > b > 0 (12marks)
- b) Evaluate the integral $\int_C \frac{dz}{(z-z_o)^{n+1}}$ where C is a circle of radius r and center at z_o and n is an integer. (8marks)

a) Find the circle of converge of

a)	$\sum_{n=1}^{\infty} n^{n}$	(4marks)
	i) $\sum_{n=0}^{\infty} nz^n$ ii) $\sum_{n=0}^{\infty} (z+5i)^{2n} (n+1)^2$	(7marks)
1)	Use the Laplace transform of the first derivative to work out $\mathcal{L}\{k\}$	(4marks)
D)	Use the Laplace transform of the first derivative e^z	(5marks)
c)	Find the poles and the corresponding residue of $f(z) = \frac{e^z}{z^2 + a^2}$	(Smarks)