

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2020/2021 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER

SPECIAL/SUPPLIMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND **BACHELOR OF SCIENCE**

COURSE CODE:

MAP 223/MAT 206

COURSE TITLE: ALGEBRAIC STRUCTURES II

DATE:

20/01/2022

TIME: 2 PM -4 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

QUESTION ONE (30 MARKS)

a.	Define	the	foll	owing

- i. Complementary relation (2 marks)
- ii. Inverse relation (2 marks)
- iii. Mathematical induction (2 marks)

b. Let $\mathbb{R} \subseteq X \times Y$ be a binary relation from X to Y. Let $A, B \subseteq X$ be subsets. Show that ;

- i. If $A \subseteq B$ then $R(A) \subseteq R(B)$ (4 Marks)
- ii. $R(A \cup B) = R(A) \cup R(B)$ (6 Marks)
- c. Prove that this rule of exponents is true for every natural number $n:(ab)^n=a^nb^n$
 - (7 marks)
- d. Determine whether 225 is divisible by 2,3,4,5,6.9 and 10 (7marks).

QUESTION TWO (20 MARKS)

- a. Define the following
 - i. Prime number (2 marks)
 - ii. Fundamental theorem of arithmetic (2marks)
 - iii. Greatest common divisor (2 marks)
- b. Show that a composite integer n has a prime factor less than or equal to \sqrt{n}
 - (5 marks)
- c. Show that there is an infinite number of prime numbers (6 marks)
- d. Show that for positive integers a and b we have ab = gcd(a, b). lcm(a, b) (3 marks)

QUESTION THREE (20 MARKS)

- a. Define the following
 - i. A real sequence (2 marks)
 - ii. Limit of a sequence (3 marks)
 - iii. Null sequence (2 marks)
 - iv. Bounded sequence (2 marks)
- b. Show that every convergent sequence is bounded (5 marks)
- c. Show that the limit of a convergent sequence is unique (6 marks)

QUESTION FOUR (20 MARKS)

a.	Define	the	fol	lowing;
----	--------	-----	-----	---------

		(* 1)
i.	Group	(3 marks)
::	Abalian group	(2 marks)

b. Show that
$$(Z, +)$$
 is a group (4 marks)

c. Show that
$$[e, (1,2,3), (1,3,2)] \le s_3$$
 (5 marks)

d. Let G be a group and
$$a \in G$$
. Show that $\langle a \rangle$ is a subgroup of G. (4 Marks)

QUESTION FIVE (20 MARKS)

a.	Define	the	fol	lowing
-				

	n'	(4marks)
1.	Ring	
		(2 1)

- ii. Field (2marks)
- b. State and prove the two properties of fields (8 marks)
 - Show that Z_3 is a field (3 marks)
 - d. State three properties of rings (3 marks)