

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2020/2021 ACADEMIC YEAR

FOURTH YEAR SECOND SEMESTER

SPECIAL/ SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR SCIENCE

COURSE CODE: MAT 426

COURSE TITLE: FOURIER SERIES

DATE: 20/01/2022 **TIME:** 2 PM - 10: AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

QUESTION ONE (30mks)

- (a) (i) Find the complex Fourier Series $F_c(x)$ if $F_R(x) = \sin^3 2x$ (4mks)
 - (ii) Express the Real Fourier Series $F_R(x) = \cos^{-2} x$ in the Complex Fourier Series form $F_c(x)$
- (b) If $D_n(\theta) = \frac{1}{2} + \cos \theta + \cos 2\theta + \dots + \cos n\theta$, show that $\frac{2}{\pi} \int_0^{\pi} D_n(\theta) d\theta = 1$ (4mks)
- (c) Compute the Fourier series of f defined by $f(x) = \begin{cases} 0 & -\pi < x < 0 \\ 1 & 0 \le x \le \pi \end{cases}$ (6mks)
- (d) Show that an even function can have no sine terms in its Fourier Series Expansion. 8mks)

QUESTION TWO (20mks)

- (a) Find the Fourier Series expansion for $f(x) = \begin{cases} 0 & -\pi \le x < 0 \\ \sin^2 x & 0 \le x \le \pi \end{cases}$ (14mks)
- (b) If f belongs to R_2 on $\{-\pi \le x \le \pi\}$, show that for each n, $\Delta_n = \int_{-\pi}^{\pi} [F(x) S_n(x)]^2 dx$ is a minimum if for $S_n(x) = \frac{c_0}{2} + \sum_{k=1}^{n} (c_k \cos kx + d_k \sin kx)$ then $c_k = a_k$ and $d_k = b_k$, where the a_k 's and b_k 's are the Fourier coefficients of f. (6mks)

QUESTION THREE (20mks)

- (a) Using the Fourier Series for x^2 , deduce $\frac{\pi^2}{6} = \sum \frac{1}{k^2}$ where $-\pi \le x \le \pi$ (15mks)
- (b) If $s_n(x) = 2\sum_{1}^{\infty} \frac{(-1)^n \sin nx}{n}$ draw the graph of $S_2(x)$ (5mks)

QUESTION FOUR (20mks)

(a) Prove that (i) $\int_{-k}^{k} \sin\left(\frac{m\pi x}{k}\right) dx = \int_{-k}^{k} \cos\left(\frac{m\pi x}{k}\right) dx = 0$ (3mks)

(ii)
$$\int_{-k}^{k} \cos\left(\frac{m\pi x}{k}\right) \cos\left(\frac{n\pi x}{k}\right) dx = \int_{-k}^{k} \sin\left(\frac{m\pi x}{k}\right) \sin\left(\frac{n\pi x}{k}\right) dx = \begin{cases} 0 & m \neq n \\ k & m = n \end{cases}$$

(14mks)

(b) If the series $f(x) = \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$ converges uniformly to f(x) in (-1.1), show that for n=1,2,3

show that for n=1,2,3......

(i)
$$a_n = \frac{1}{l} \int_{-l}^{l} F(x) \cos \frac{n\pi x}{l} dx$$
(1mk)

(ii)
$$b_n = \frac{1}{l} \int_{-l}^{l} F(x) \sin \frac{n\pi x}{l} dx$$
 (1mk)

(iii)
$$A = \frac{a_o}{2}$$

QUESTION FIVE (20mks)

(a) Find the Fourier Series expansion for
$$f(x) = \begin{cases} 0 & -\pi \le x < 0 \\ \sin^2 x & 0 \le x \le \pi \end{cases}$$
 (14mks)

(b) If f belongs to
$$R_2$$
 on $\{-\pi \le x \le \pi\}$, show that for each n, $\Delta_n = \int_{-\pi}^{\pi} [F(x) - S_n(x)]^2 dx$ is a minimum if for $S_n(x) = \frac{c_0}{2} + \sum_{k=1}^{n} (c_k \cos kx + d_k \sin kx)$ then $c_k = a_k$ and $d_k = b_k$, where the a_k 's and b_k 's are the Fourier coefficients of f. (6mks)