

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR SECOND YEAR SECOND SEMESTER SPECIAL/SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE:

MAT 222/MAA 221

COURSE TITLE: CALCULUS III

DATE:

18/01/2022

TIME: 8 AM - 10 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

OUESTION ONE (30 MARKS)

- a) Find the domain and range for the function $f(x, y) = \sqrt{2y x}$ (2 mks)
- b) Find the radius and interval of convergence of the series $\sum_{k=1}^{\infty} \frac{(-4)^k (x-6)^k}{k4^{k-1}}$ (5 mks)
- c) The production function is given by f(x, y) = 4xy maximize the this function subject to budget constraint 5x + 4y = 7 (5 mks)
- d) Find the volume in the 1st octant between the planes z = 0, and z = 3x + y 2And inside the cylinder $x^2 + y^2 = 25$ (5 mks)
- e) Investigate the convergence of $\sum_{k=0}^{\infty} \frac{(-2)^k e^k}{k!}$ (6 mks)
- f) Locate any relative extreme points and determine their nature for the function $f(x, y, z) = 5x^2 + 3y^2 + z^2 12x + 18y 5z + 40$ (7 mks)

QUESTION TWO (20 MARKS)

- a) Use the Lagrange multipliers to find the local extrema of the function $f(x, y) = y^3 9x^2$ Subject to $x^2 + y^2 = 16$ (7 mks)
- b) Suppose x is a differentiable function near each (y, z) for the equation $z\sin y 4x^2z + 4e^{xyz} = 33$ find $\frac{\partial x}{\partial y}$ (3mks)
- c) Evaluate $\lim_{(x,y)\to(4,4)} \frac{\sqrt{x}-\sqrt{y}}{y^2-xy}$ (4 mks)
- d) A closed cylinder has a surface area of 82.62 cm² Find the radius and the height that will yield minimum volume (6 mks)

QUESTION THREE (20 MARKS)

- a) Let $z = e^{2x} cosecy$ and $x = 4s^2t^2 t$ and $y = s^3 3t$ find $\frac{\partial z}{\partial t}$ and $\frac{\partial z}{\partial s}$ (7 mks)
- b) If $R = \{x, y \mid 0 \le x \le 1 \text{ and } 1 \le y \le 2\}$ evaluate $\iint_R (-16xy^2 x^3y + 8) dA$ (3 mks)
- c) Find the volume of the solid bounded by the graphs of $z = 9 y^2$, x z = 2, x = 0, and z = 0 (5 mks)
- d) Consider the series $S_n = \frac{1}{\sqrt{2n-1}}$ using the integral test, determine whether the series converges or diverges (5 mks)

QUESTION FOUR (20 MARKS)

a) Consider the series
$$\sum_{k=1}^{\infty} \frac{(-3)^{k-1}4^k}{3k^2}$$
 use ratio theorem to show that the series diverges (4 mks)

b) Locate and classify all critical points of $f(x_1, x_2, x_3) = 2x_2 + 6x_1x_3 - 2x_1^3 - x_2^2 - 6x_3^2 - 16$ (6 mks)

c) For what values does the series converge
$$\sum_{n=1}^{\infty} \frac{(x-5)^n}{n}$$
 (4 mks)

d) Verify that the Tailor series expansion for the function f(x) = sinx about x = 0 is $sinx = \sum_{n=0}^{\infty} \frac{(-1)^n (x)^{2n+1}}{(2n+1)!}$ hence find the Maclaurin series for f(x) = x sinx (6 mks)

QUESTION FIVE (20 MARKS)

a) Use the 1st principles to determine
$$\frac{\partial f}{\partial y}$$
 given that $f(x,y) = xy - 2x^2y^2 - 2y^3$ (4 mks)

b) Let
$$f(x, y, z) = 2x ln(xz) - e^{x^2y} + 3\cos(xyz)$$
. Find

(i) f_{xx} (2 mks)

(ii)
$$f_{yyz}$$
 (2 mks) (3 mks)

(6 mks)

c) Evaluate
$$\int_0^\pi \int_0^{\frac{\pi}{2}} \int_0^{\sin y} 4\sin z \cos y dx dy dz$$
 (5 mks)

d) Find the area of the portion of the cone $x^2 + y^2 = 9z^2$ lying above the xy-plane and inside the cylinder $x^2 + y^2 = 5y$