

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2021/2022 ACADEMIC YEAR
THIRD YEAR FIRST SEMESTER
MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE: MAP 311

COURSE TITLE: REAL ANALYSIS II

DATE: 17/05/2022 **TIME:** 2:00 PM - 4:00 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

OUESTION ONE (30 MARKS)

- a) Define the following terms:
 - Open and closed set (i)
 - (ii) An interior point
 - Cauchy sequence (iii)
- (iv) Compact set b) State Uniform Continuity Theorem
- is open.

QUESTION TWO (20 MARKS)

- a) Define the following terms:

 - Metric space (i)

 - (ii)
- Open and closed ball b) Show that if (X_i, d_i) where I = 1, 2, ..., n are metric spaces, then $X = X_1 \times I_1 \times I_2 \times I_2 \times I_3 \times I_4 \times$

the composition $g \circ f: X \to Z$ is continous.

(2 marks)

(4 marks)

(2 marks)

(2 marks)

(4 marks)

- c) Show that for every $x \in X$ and r > 0 the open ball B(x, r) in a metric space
 - (10 marks)
- d) Suppose $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are continous between metric spaces, then
 - (6 marks
 - - (5 marks) (5 marks)
 - $X_2 \times ... \times X_n$ become a metric space with the metric d defined by:
 - $d(x, y) := \sum_{i=1}^{n} d_i(x_i, y_i)$ for all $x = (x_i, ..., x_n)$ and $y = (y_i, ..., y_n)$ (10 marks)

QUESTION THREE (20 MARKS)

- a) Define the following terms:
 - (i) Accumulation point (4 marks)
 - (ii) Relatively compact sets (2 marks)
 - (iii) Open cover (2 marks)
 - (iv) Total boundedness (2 marks)
- b) Let (X, d) be a metric space. Show that closed subsets of compact metric spaces are compact. (10 marks)

QUESTION FOUR (20 MARKS)

- a) Define the following terms:
 - (i) Continous function (5 marks)
 - (ii) Uniform continuity (5 marks)
- b) Show that for every non-empty set $A \subseteq X$ the map $X \to \mathbb{R}$, $x \mapsto \text{dist}(x, A)$ is continous. (10 marks)

QUESTION FIVE (20 MARKS)

- a) Show that a sequence in a metric space (X, d) has at most one limit.
 - (10 marks)
- b) Show that if (x_n) is a sequence in a metric space (X, d) and $x_0 \in X$, then the following statements are equivalent:
- $(1)\lim_{n\to\infty} x_n = 0$
- (2) For every $\varepsilon > 0$, $\exists n_0 \in \mathbb{N}$ such that $d(x_n, x_0) < \varepsilon$ for all $n \ge n_0$.

 (10 marks)