

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2021/2022 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE MATHEMATICS

COURSE CODE:

MAP 121

COURSE TITLE:

ALGEBRAIC STRUCTURES I

DATE:

17/05/2022

TIME: 2:00 PM - 4:00 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

QUESTION ONE COMPULSORY (30 MARKS)

a) Define the following

0916	1007	
	Croun	(4marks)
1.	Group	(Hillarks)

b) Define the Klein four group
$$S_3$$
 and give its subgroups . (8marks)

c) If G is the quarternion group and its subgroup $H = \{\pm 1\}$, give the left cosets of H in

d) Generate a
$$3 \times 3$$
 circulant matrix starting with $[a, b, c]$ (3marks)

QUESTION TWO (20 MARKS)

a) Define the following

i.	Cyclic Group	(2marks)
		()

c) Find the inverse of the following matrix, whose entries are elements of \mathbb{Z}_6 (6marks)

$$A = \begin{bmatrix} 5 & 3 \\ 4 & 2 \end{bmatrix}$$

QUESTION THREE (20 MARKS)

c) Define the following

- d) Let $H \le G$ and $x, y \in G$ then proof that either xH = yH or $xH \cap yH = \emptyset$ (6 marks)
- e) Let * be an associative binary operation on a set S. Then for all $a \in S$ and all natural numbers m and n, show that

i.
$$a^m * a^n = a^{m+n}$$
 (2marks)

ii.
$$(a^m)^n = a^{mn}$$
 (2marks)

f) State 3 examples of fields (3marks)

QUESTION FOUR (20 MARKS)

State and proof the lagranges theorem

State five examples of binary operations

State the subgroups of the Quarternion group

Show that if |G| = p where p is a prime, then G is cyclic

a)	Defin	ne the following		
	i.	Simple group		(2marks)
	ii.	Index of a group		(2marks)
	iii.	Proper subgroup		(2marks)
b)	Defin	ne the klein-4 Group		(6marks)
c)	Prove that the quotient group G/H satisfies the group axioms			(5marks)
d)	Give	examples of simple groups		(3marks)
QUES	STION	N FIVE (20 MARKS)		

(6marks)

(5marks)

(4marks)

(5marks)