

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR

SECOND YEAR FIRST SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF B.Ed. (SCIENCE)

COURSE CODE:

SPH 221

COURSE TITLE:

ELECTRICITY AND MAGNETISM II

DURATION: 2 HOURS

DATE: 17/05/2022

TIME: 9:00AM-11:00AM

INSTRUCTIONS TO CANDIDATES

Answer QUESTION ONE (Compulsory) and any other two (2) Questions.

- The following constants might be used: $K_e=8.99 \times 10^9 \text{ N.m}^2/\text{C}^2$; $M_e=9.1 \times 10^{-31} \text{ kg}$; $M_p=1.6 \times 10^{-27} \text{ kg}$; $e=1.60 \times 10^{-19} \text{ C}$; $\epsilon_0=8.85 \times 10^{-12} \text{ C}^2/\text{N.M}^2$

KIBU observes ZERO tolerance to examination cheating

QUESTION ONE [30 Marks]

- a) State Coulombs law. [2]
- b) Estimate the speed of an electron in a hydrogen atom with radius about 0.53×10^{-10} m.

c) Consider three point charges located at the corners of right triangle as shown in figure 1, where $q1=q2=5.0\mu\text{C}$, $q3=-2.0\mu\text{C}$ and a=0.10m. Find the resultant force exerted on q3. [4]

figure 1

- d) Give the definition and units of electric field. [2]
- e) Show that for a parallel-plate capacitor, the capacitance is given by $C=Q/\Delta V=\epsilon_0/d$ [4]
- f) Show that for two capacitors in series, the equivalent capacitance is given by $\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2}$ [3]
- g) Show that for an insulating sphere of radius a with uniform charge density ρ and carries a positive charge Q, the electric field in region r<a is given by $E = \frac{\rho}{3\varepsilon_0}r$ [4]
- h) A parallel plate capacitor has an area of A=2.0x10⁻⁴ m² and plate separation=1.0 mm. Find its capacitance. [3]
- i) Show that the work done in charging a capacitor to a charge Q equals the electrical potential energy U stored in the capacitor i.e. $U = \frac{Q^2}{2C} = \frac{1}{2}Q\Delta V = \frac{1}{2}C(\Delta V)^2$ [4]

QUESTION TWO [20 Marks]

- a) Utilizing the electric field due to a point charge, show that the electric flux Φ is given by $\Phi = \frac{q}{\varepsilon_0}$
- b) A spherical shell with R=5 m has a net charge of Q=1μC uniformly distributed over the surface. What is the magnitude of the electric field at (a) a distance r=1m from the *center* of the sphere and (b) a distance d=1 m from the *surface* of the sphere?
- c) Show that the capacitance of a parallel plate capacitor is given by $C = \frac{\varepsilon_0 A}{d}$ where ε_0 =permittivity of free space; A= area of the plates and d=plate separation. [4]

- d) Joule's heating in a resistor R is given as $P=i^2R=\frac{\varepsilon^2R}{(R+r)^2}$ where $\varepsilon=e.m.f$ of the cell and r is the internal resistance. What is the value of R to obtain maximum Joule's heating? [3]
- e) What is the force on $0.1\mu\text{C}$ charge moving at velocity $\mathbf{v} = (10\mathbf{j} 20\mathbf{k})$ m/s in a magnetic field $\mathbf{B} = (-3\mathbf{i} + 4\mathbf{k}) \times 10 4 \text{ T}$?
- f) Consider a capacitor of capacitance C that is being discharged through a resistor of resistance R. After how many time constants is the charge on the capacitor one-fourth its initial value? [3]

QUESTION THREE [20 Marks]

- a) State the Kirchhoff's laws, as applied in complex circuit analysis [2]
- Find the currents I_1 , I_2 and I_3 in the circuit shown in figure 2. [8]

Figure 2

Show that if a capacitor is charged with a battery through a resistor of resistance R, the charge on the capacitor vary in time according to the expression $q(t) = Q(1 - e^{-t/RC})$. What does the product RC represent?

QUESTION FOUR [20 Marks]

- a) A proton is moving in a circular orbit of radius 14 cm in a uniform 0.35T magnetic field perpendicular to the velocity of the proton. Find the linear speed of the proton. [3]
- b) Give a mathematical expression of the Biot-Savart law? [2]
- c) Explain the origin of magnetic field that can be determined by the Biot-Savart law. [1]
- d) For a straight, long thin wire carrying a constant current i, determine the magnitude of magnetic field at a point P due to this current. [use figure 3] [8]

e) Charge q and –q are at a distance b from each other, as shown in figure 4. What is the electric field at a point P, which lies at a third corner of the square? [6]

P• • -q

• q

Figure 4

QUESTION FIVE [20 Marks]

- a) A parallel plate capacitor of capacitance 1 pF has dimensions 5 cm by 10 cm separated by a paper of thickness d millimeters. Find the thickness of this dielectric. (k=2). [4]
- b) What is maximum charge that can be placed on this capacitor? (dielectric strength of paper is $16x10^6 \text{ V/m}$) [4]
- c) Find the electric field due to a non-conducting, infinite plane of positive charge with uniform surface charge density σ.
- d) Find an expression for the electric potential at a point p located on the perpendicular central axis of a uniformly charged ring of radius a and total charge Q. [6]

.....END.