



# KIBABII UNIVERSITY

# UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR

FOURTH YEAR SECOND SEMESTER SUPPLEMENTARY EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE:

**SCH 431** 

COURSE TITLE:

NATURAL PRODUCTS CHEMISTRY

**DATE**: 21/1/2022

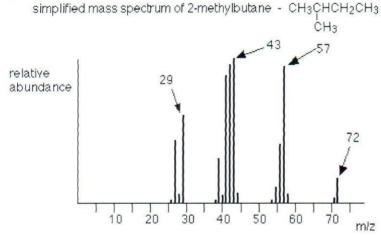
TIME: 2-4PM

## INSTRUCTIONS TO CANDIDATES:

TIME: 2 Hours

Answer question ONE and any TWO of the remaining

| I(a) Describe the molecular ion peak in mass spectrometry                                                                                                                                                                                                                                                                   | [2mks]                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| (b) Explain the principle behind UV absorption in UV spectroscopy                                                                                                                                                                                                                                                           | [4mks]                             |
| (c) Compare bend and stretch vibrations IR spectroscopy                                                                                                                                                                                                                                                                     | [4mks]                             |
| <ul><li>(d) With a specific example, explain the concept of chemical shielding spectroscopy</li><li>(e) Describe charge transfer transitions in UV spectroscopy</li><li>(f)Describe the matrix assisted laser desorption ionization (MALDI)</li><li>(g) Describe the concept of ring currents in NMR spectroscopy</li></ul> | in NMR [4mks] [4mks] [4mks] [4mks] |
| (h)                                                                                                                                                                                                                                                                                                                         | [4mks]                             |


[2001/0]

#### **QUESTION TWO (20 Marks)**

2(a)Explain the field ionization techniques in mass spectrometry [6mks]

(b) Illustrate retro Diels-Alder fragmentation in mass spectrometry [2mks]

(c) Below is a mass spectrum of an organic compound whose structure is indicated on the spectrum.



- (c) Give structures of fragment ions associated with M/Z values, 29, 43, 57, 72
- (d) Explain the nitrogen rule in mass spectrometry [6mks]

#### **QUESTION THREE (20 Marks)**

3(a) Explain the principles behind the following spectroscopic techniques [4mks]

(i) UV spectroscopy

(ii) IR spectroscopy

(b) Explain a "forbidden" transition in UV spectroscopy

[2mks]

(c) Explain the working principle of a UV detector

[4mks]

(d) Using woodward-Fieser rules for dienes, determine the maximum absorption wavelength  $(\lambda_{max})$  of the following compounds [8mks]

$$CH_3$$
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 

(f) State any two solvents suitable in UV spectroscopy

[2mks]

# **QUESTION FOUR (20 Marks)**

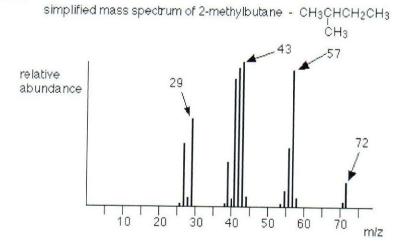
4(a) Discuss the effect of solvent polarity in IR spectroscopy

[6mks]

(b) List any two solvents suitable in IR spectroscopy

[2mks]

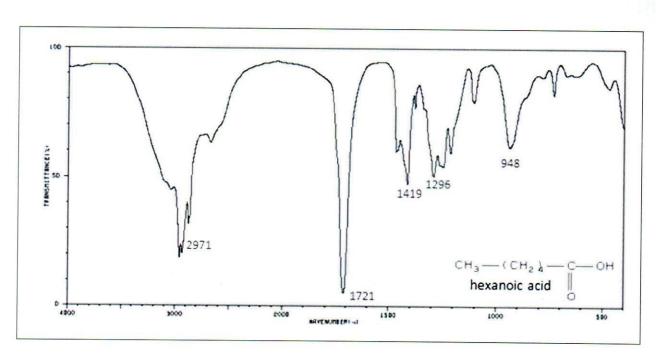
(c) The IR spectrum of hexanoic acid is shown below. Identify the functional groups associated with given peaks in the compound [12mks]


| 1(a) Describe the molecular ion peak in mass spectrometry                                                                                                                                                                                                                                                                                  | [2mks]                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| (b) Explain the principle behind UV absorption in UV spectroscopy                                                                                                                                                                                                                                                                          | [4mks]                          |
| (c) Compare bend and stretch vibrations IR spectroscopy                                                                                                                                                                                                                                                                                    | [4mks]                          |
| <ul><li>(d) With a specific example, explain the concept of chemical shielding in spectroscopy</li><li>(e) Describe charge transfer transitions in UV spectroscopy</li><li>(f)Describe the matrix assisted laser desorption ionization (MALDI)</li><li>(g) Describe the concept of ring currents in NMR spectroscopy</li><li>(h)</li></ul> | NMR [4mks] [4mks] [4mks] [4mks] |

## **QUESTION TWO (20 Marks)**

2(a)Explain the field ionization techniques in mass spectrometry [6mks]

(b) Illustrate retro Diels-Alder fragmentation in mass spectrometry [2mks]


(c) Below is a mass spectrum of an organic compound whose structure is indicated on the spectrum.



(c) Give structures of fragment ions associated with M/Z values, 29, 43, 57, 72


(d) Explain the nitrogen rule in mass spectrometry [6mks]

## **QUESTION THREE (20 Marks)**



#### **QUESTION FIVE (20 Marks)**

- 5(a) Explain the difference between one and two dimension NMR spectroscopy[4mks]
- (b) Explain the causes of the following types of spin coupling in NMR spectroscopy [6mks]
- (i) Meta coupling
- (ii) vicinal coupling
- (iii) Germinal coupling
- (c) The <sup>1</sup>H NMR spectrum of an organic compound is shown below.



(i) Identify the correct peaks and multiplicities for all the chemically different protons of the compound [10mks]