KIBABII UNIVERSITY # UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR FOURTH YEAR SECOND SEMESTER SUPPLEMENTARY EXAMINATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE COURSE CODE: **SCH 431** COURSE TITLE: NATURAL PRODUCTS CHEMISTRY **DATE**: 21/1/2022 TIME: 2-4PM ## INSTRUCTIONS TO CANDIDATES: TIME: 2 Hours Answer question ONE and any TWO of the remaining | I(a) Describe the molecular ion peak in mass spectrometry | [2mks] | |---|------------------------------------| | (b) Explain the principle behind UV absorption in UV spectroscopy | [4mks] | | (c) Compare bend and stretch vibrations IR spectroscopy | [4mks] | | (d) With a specific example, explain the concept of chemical shielding spectroscopy(e) Describe charge transfer transitions in UV spectroscopy(f)Describe the matrix assisted laser desorption ionization (MALDI)(g) Describe the concept of ring currents in NMR spectroscopy | in NMR [4mks] [4mks] [4mks] [4mks] | | (h) | [4mks] | [2001/0] #### **QUESTION TWO (20 Marks)** 2(a)Explain the field ionization techniques in mass spectrometry [6mks] (b) Illustrate retro Diels-Alder fragmentation in mass spectrometry [2mks] (c) Below is a mass spectrum of an organic compound whose structure is indicated on the spectrum. - (c) Give structures of fragment ions associated with M/Z values, 29, 43, 57, 72 - (d) Explain the nitrogen rule in mass spectrometry [6mks] #### **QUESTION THREE (20 Marks)** 3(a) Explain the principles behind the following spectroscopic techniques [4mks] (i) UV spectroscopy (ii) IR spectroscopy (b) Explain a "forbidden" transition in UV spectroscopy [2mks] (c) Explain the working principle of a UV detector [4mks] (d) Using woodward-Fieser rules for dienes, determine the maximum absorption wavelength (λ_{max}) of the following compounds [8mks] $$CH_3$$ CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 (f) State any two solvents suitable in UV spectroscopy [2mks] # **QUESTION FOUR (20 Marks)** 4(a) Discuss the effect of solvent polarity in IR spectroscopy [6mks] (b) List any two solvents suitable in IR spectroscopy [2mks] (c) The IR spectrum of hexanoic acid is shown below. Identify the functional groups associated with given peaks in the compound [12mks] | 1(a) Describe the molecular ion peak in mass spectrometry | [2mks] | |--|---------------------------------| | (b) Explain the principle behind UV absorption in UV spectroscopy | [4mks] | | (c) Compare bend and stretch vibrations IR spectroscopy | [4mks] | | (d) With a specific example, explain the concept of chemical shielding in spectroscopy(e) Describe charge transfer transitions in UV spectroscopy(f)Describe the matrix assisted laser desorption ionization (MALDI)(g) Describe the concept of ring currents in NMR spectroscopy(h) | NMR [4mks] [4mks] [4mks] [4mks] | ## **QUESTION TWO (20 Marks)** 2(a)Explain the field ionization techniques in mass spectrometry [6mks] (b) Illustrate retro Diels-Alder fragmentation in mass spectrometry [2mks] (c) Below is a mass spectrum of an organic compound whose structure is indicated on the spectrum. (c) Give structures of fragment ions associated with M/Z values, 29, 43, 57, 72 (d) Explain the nitrogen rule in mass spectrometry [6mks] ## **QUESTION THREE (20 Marks)** #### **QUESTION FIVE (20 Marks)** - 5(a) Explain the difference between one and two dimension NMR spectroscopy[4mks] - (b) Explain the causes of the following types of spin coupling in NMR spectroscopy [6mks] - (i) Meta coupling - (ii) vicinal coupling - (iii) Germinal coupling - (c) The ¹H NMR spectrum of an organic compound is shown below. (i) Identify the correct peaks and multiplicities for all the chemically different protons of the compound [10mks]