

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2020/2021 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER

SPECIAL/SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF MASTER OF SCIENCE IN PURE AND

APPLIED MATHEMATICS

COURSE CODE:

MAT 817/869

COURSE TITLE:

COMPLEX ANALYSIS I

DATE:

20/01/2022

TIME: 8 AM -11 AM

INSTRUCTIONS TO CANDIDATES

Answer Any THREE Questions

TIME: 3 Hours

QUESTION ONE [20 MARKS]

Consider the triangle P(0,0), Q(2,0) and R(2,4)

- (i) Draw the triangle and its image under $T(z) = 2z^2 + (3 2i)$ (12 mks)
- (ii) Discuss conformity of T at P(0,0) and R(2,4) (8 mks)

QUESTION TWO [20 MARKS]

(a) Find the Laurent series about the indicated singularity for the function

$$f(z) = \frac{1}{(z+1)(z+3)} \qquad z > 3$$
 (4 mks)

- (b) Evaluate $\oint_C \frac{2z^2+z}{z^2-1} dz$ where C is a circle |z-1|=1 (5 mks)
- (c) Evaluate (3x + y)dx + (2y x)dy
 - (i) Along the curve $y = x^2 + 1$ (5 mks)
 - (ii) Straight lines from (0,1) to (0,5) and then (0,5) to (2,5) (6 mks)

QUESTION THREE [20 MARKS]

(a) Show that
$$sec^{-1}(z) = \frac{1}{i} ln\left(\frac{1+\sqrt{1-z^2}}{z}\right)$$
 (5 mks)

- (b) Find the residuals of the function $f(z) = \frac{z^2}{(z-1)^2(z+2)}$ (5 mks)
- (c) Evaluate $\oint_C (7x 2y + 7)dx + (3x 4y 10)dy$ around a triangle in the xy plane with vertices at (0,0), (2,0) and (2,3) (5 mks)
- (d) Determine the number of zeros of $z^6 + 5z^2 z = 1$ interior to |z| = 1 (5 mks)

QUESTION FOUR [20 MARKS]

- (a) Prove that the function $f_1(z) = \int_0^\infty t^3 e^{-zt} dt$ is analytic at all points of z for which Rez > 0 (6 mks)
 - (b) State and prove the Rouche's theorem (14 mks)

QUESTION FIVE [20 MARKS]

- (a) State the following terms
 - (i) Analytic continuation (2 mks)
 - (ii) Conformal mapping
- (b) If $f(z) = z^5 2z^3 + 3z + 2 i$, evaluate

 $\int_{C} \frac{f^{l}(z)}{f(z)} dz \text{ where C encloses all zeros of } f(z)$ (4 mks)

(6 mks)

- (c) Determine the linear fractional transformation that maps z = 0, -i, -1 onto w = i, 1, 0 respectively
- (d) Evaluate $\oint_C (z Re(z))dz$ C: |z| = 2 (6 mks)