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QUESTION ONE COMPULSORY (30 MARKS)

a) Define the following terms

(1) Simply connected region (2 mks)

(1) Multiply connected region (2 mks)
b) Evaluate limm (2 mks)

o _% (iz—1)

¢) Given z = 1 — 3i determine the modulus and argument of z (3 mks)
d) Using De Moivre’s theorem show that

sin36 = 3cos*0sind — sin6 (4 mks)
e) Show that for the complex variable z, sin (z; + z;) = sinz cosz, + cosz,sinz,

(5 mks)

f) Find a function U(x, y) such that;

f(2) = U(x,y) + iV(x, y), given that V(x,y) = 4x%y — xziyz (6 mks)

2

g) Find the residuals of f(z) = E:";T(j—;:dr_) at all its poles and hence evaluate

$. f(2)dz (6 mks)

QUESTION TWO (20 MARKS)

a) Giventhat w = f(z) = z(3 — 2z). Find the values of w corresponding to

2=2=1 (5 mks)
b) Find the analytic function w = f(z) if its imaginary part is

V(x,¥) = 2xy + 3x and if f(—i) = 2 (5mks)
¢) Evaluate |. 13;.2[ (x? = 2ixy)dz (5 mks)
d) State and prove Cauchy Riemann equations (5 maks)

QUESTION THREE (20 MARKS)

a) Using Cauchy’s integral formula, evaluate fc -Zé%dz where Cis |z— 3| = 2.5

(7 marks)
b) Prove that $ zdz = 0 (6 mks)
ZZ

¢) Using residue theorem, evaluate [ = @C Ty dz, where Cis |z| = 3 (7 marks)



QUESTION FOUR (20 MARKS)

a) Consider the function f(z) = 6x+ 2y + (— x + 5y)i, show that the function f(z) is not
differentiable (10 marks)

b) Evaluate f01+2£ (2x + y — ix?) dz along the imaginary axis from

z=0 to z=2i and then along a line parallel to the real axis from z=21i to z=1+21i

(10 marks)

QUESTION FIVE (20 MARKS)

a) Find the first four terms of the Taylor series expansion of f(z) = In(3 + z) about the
point z= 0 (10 marks)

b) Locate and name the singularities in the finite Z-plane f(z) = (22—:9)3 and determine

whether it is isolated singularity or not . (10 marks)



