KIBABII UNIVERSITY ## UNIVERSITY EXAMINATIONS **2020/2021 ACADEMIC YEAR** THIRD YEAR SECOND SEMESTER SPECIAL/SUPPLEMENTARY EXAMINATIONS FOR THE DEGREE OF BACHELOR OF CHEMISTRY COURSE CODE: **SCH 327** COURSE TITLE: SYMMETRY, MOLECULAR STRUCTURE AND PROPERTIES **DURATION: 2 HOURS** DATE: 20/1/2022 TIME: 8-10AM ## INSTRUCTIONS TO CANDIDATES - Answer QUESTION ONE (Compulsory) and any other two (2) Questions. - Indicate answered questions on the front cover. - Start every question on a new page and make sure question's number is written on each page. This paper consists of 5 printed pages. Please Turn Over ### QUESTION ONE.COMPULSORY | (a) | | the following terms; | (4 | |-----|--|--|---------------| | | marks) | Symmetry element | | | | (ii) | Symmetry operation | | | (b) | | ate the number of vibrational modes in CO ₂ and CH ₄ | (4 | | | marks) | | | | (c) | The symmetry operators for NH ₃ are E, C_3 and $3\sigma_v$. | | | | | (i) | Draw the structure of NH ₃ . | (2 | | | | marks) | 12 | | | (ii) | What is the meaning of the E operator? | (2 | | | | marks) | . (2 | | | (iii) | Draw a diagram to show the rotation and reflection symmetry o | perations. (2 | | | | marks) | | | (d) | What s | What symmetry elements do BCl ₃ and PCl ₃ | | | | (i) | have in common and | (2 marks) | | | (ii) | Not have in common? | (2 marks) | | (e) | Determine the point group of PF ₅ . | | (3 | | | marks | | /0 | | (f) | To wh | nat point group does POCl ₃ belong? | (3 | | | marks |) | | | (g) | Three projections of the cyclic structure of S_8 are shown below all S-S bond distances are equivalent, as are all S-S-S bond angles. To what point group does S_8 belong? (5) | | | (h) The IR spectrum of SnCl₂ exhibits absorptions at 352, 334 and 120 cm⁻¹. What shape do these data suggest for the molecule, and is this result consistent with VSEPR theory? (5 marks) (i) Determine the point group of trans-N₂F₂. (2 marks) **QUESTION TWO** marks) (a) The oxalate ligand, $[C_2O_4]^{2-}$, is a bidentate ligand and the structure of the complex ion $[Fe(ox)_3]^{3-}$ is shown below. Confirm that the point group to which the ion belongs is D_3 and that members of this point group are chiral. (5 marks) - (b) How do the rotation axes and planes of symmetry in cis- and trans-N₂F₂ differ? (5 marks). - (c) Draw the structures of each of the following species and confirm that each possesses a center of symmetry: CS₂, [PF₆] , XeF₄, I₂, [ICl₂] (10 marks) #### **OUESTION THREE** - (a) Assign a point group to each member in the series (i) CCl₄, (ii) CCl₃F, (iii) CCl₂F₂, (iv) CClF₃ and (v) CF₄. (5 marks) - (b) Determine the number of degrees of vibrational freedom for each of the following: (i) SO₂; (ii) SiH₄; (iii) HCN; (iv) H₂O; (v) BF₃ (5 - marks) (c) Explain what is meant by (i) Chiral (ii) Enantiomer (iii) Helical Chain (3 marks) - (d) How many normal modes of vibration are IR active for (i) H₂O, (ii) SiF₄, (iii) PCl₃, (iv) AlCl₃, (v) CS₂ and (vi) HCN? (6 marks) - (a) The point group of $[AuCl_2]$ is $D\infty h$. What shape is this ion? (1 mark) #### **QUESTION FOUR** - (a) Using VSEPR theory, draw the structures of CF₄, XeF₄ and SF₄. Assign a point group to each molecule. Show that the number of degrees of vibrational freedom is independent of the molecular symmetry. (10 marks) - (b) How many degrees of freedom do each of the following possess: SiCl₄, BrF₃, POCl₃ (3 marks) - (c) The IR spectrum of SF_2 has absorption at 838, 813 and 357cm^{-1} . Explain why these data are consistent with SF_2 belonging to the C_{2v} rather than $D \infty h$ point group. (3 marks) - (d) The vibrational modes of XeF₂ are at 555, 515 and 213cm⁻¹ but only two are IR active. Explain why this is consistent with XeF₂ having a linear structure. (4 marks) #### **QUESTION FIVE** - (a) Use the flow chart below to assign the point groups to the following molecules (10 marks) - (i)Ammonia, (ii) acetone, (iii) dimethylcyclopentane, (iv) ethanediol, (v) propanediene - (b) The [PdCl₄]²⁻ ion gives rise to three absorptions in its IR spectrum (150, 321 and 161 cm⁻¹. Rationalize why this provides evidence for a D_{4h} rather than a T₄ structure. (5 marks) - (c) The IR spectrum of gaseous ZrI₄ shows absorption at 55 and 254 cm⁻¹. Explain why this observation is consistent with molecules of ZrI₄ having T₄ symmetry. (5 marks) #### Additional data for use