

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS **2020/2021 ACADEMIC YEAR**

THIRD YEAR SECOND SEMESTER SPECIAL/SUPPLEMENTARY EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF CHEMISTRY

COURSE CODE: **SCH 327**

COURSE TITLE: SYMMETRY, MOLECULAR STRUCTURE AND PROPERTIES

DURATION: 2 HOURS

DATE: 20/1/2022

TIME: 8-10AM

INSTRUCTIONS TO CANDIDATES

- Answer QUESTION ONE (Compulsory) and any other two (2) Questions.
- Indicate answered questions on the front cover.
- Start every question on a new page and make sure question's number is written on each page.

This paper consists of 5 printed pages. Please Turn Over

QUESTION ONE.COMPULSORY

(a)		the following terms;	(4
	marks)	Symmetry element	
	(ii)	Symmetry operation	
(b)		ate the number of vibrational modes in CO ₂ and CH ₄	(4
	marks)		
(c)	The symmetry operators for NH ₃ are E, C_3 and $3\sigma_v$.		
	(i)	Draw the structure of NH ₃ .	(2
		marks)	12
	(ii)	What is the meaning of the E operator?	(2
		marks)	. (2
	(iii)	Draw a diagram to show the rotation and reflection symmetry o	perations. (2
		marks)	
(d)	What s	What symmetry elements do BCl ₃ and PCl ₃	
	(i)	have in common and	(2 marks)
	(ii)	Not have in common?	(2 marks)
(e)	Determine the point group of PF ₅ .		(3
	marks		/0
(f)	To wh	nat point group does POCl ₃ belong?	(3
	marks)	
(g)	Three projections of the cyclic structure of S_8 are shown below all S-S bond distances are equivalent, as are all S-S-S bond angles. To what point group does S_8 belong? (5)		

(h) The IR spectrum of SnCl₂ exhibits absorptions at 352, 334 and 120 cm⁻¹. What shape do these data suggest for the molecule, and is this result consistent with VSEPR theory? (5 marks)

(i) Determine the point group of trans-N₂F₂. (2 marks)

QUESTION TWO

marks)

(a) The oxalate ligand, $[C_2O_4]^{2-}$, is a bidentate ligand and the structure of the complex ion $[Fe(ox)_3]^{3-}$ is shown below. Confirm that the point group to which the ion belongs is D_3 and that members of this point group are chiral. (5 marks)

- (b) How do the rotation axes and planes of symmetry in cis- and trans-N₂F₂ differ? (5 marks).
- (c) Draw the structures of each of the following species and confirm that each possesses a center of symmetry: CS₂, [PF₆] , XeF₄, I₂, [ICl₂] (10 marks)

OUESTION THREE

- (a) Assign a point group to each member in the series (i) CCl₄, (ii) CCl₃F, (iii) CCl₂F₂, (iv) CClF₃ and (v) CF₄. (5 marks)
- (b) Determine the number of degrees of vibrational freedom for each of the following: (i) SO₂; (ii) SiH₄; (iii) HCN; (iv) H₂O; (v) BF₃ (5
- marks)
 (c) Explain what is meant by (i) Chiral (ii) Enantiomer (iii) Helical Chain (3 marks)
- (d) How many normal modes of vibration are IR active for (i) H₂O, (ii) SiF₄, (iii) PCl₃, (iv) AlCl₃, (v) CS₂ and (vi) HCN? (6 marks)
- (a) The point group of $[AuCl_2]$ is $D\infty h$. What shape is this ion? (1 mark)

QUESTION FOUR

- (a) Using VSEPR theory, draw the structures of CF₄, XeF₄ and SF₄. Assign a point group to each molecule. Show that the number of degrees of vibrational freedom is independent of the molecular symmetry. (10 marks)
- (b) How many degrees of freedom do each of the following possess: SiCl₄, BrF₃, POCl₃ (3 marks)
- (c) The IR spectrum of SF_2 has absorption at 838, 813 and 357cm^{-1} . Explain why these data are consistent with SF_2 belonging to the C_{2v} rather than $D \infty h$ point group. (3 marks)
- (d) The vibrational modes of XeF₂ are at 555, 515 and 213cm⁻¹ but only two are IR active. Explain why this is consistent with XeF₂ having a linear structure. (4 marks)

QUESTION FIVE

- (a) Use the flow chart below to assign the point groups to the following molecules (10 marks)
 - (i)Ammonia, (ii) acetone, (iii) dimethylcyclopentane, (iv) ethanediol, (v) propanediene

- (b) The [PdCl₄]²⁻ ion gives rise to three absorptions in its IR spectrum (150, 321 and 161 cm⁻¹. Rationalize why this provides evidence for a D_{4h} rather than a T₄ structure. (5 marks)
- (c) The IR spectrum of gaseous ZrI₄ shows absorption at 55 and 254 cm⁻¹. Explain why this observation is consistent with molecules of ZrI₄ having T₄ symmetry. (5 marks)

Additional data for use

