

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2020/2021 ACADEMIC YEAR

FOURTH YEAR FIRST SEMESTER

SPECIAL/SUPPLIMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND BACHELOR OF SCIENCE

COURSE CODE:

MAT 421

COURSE TITLE:

PDE I

DATE:

14/01/2022

TIME: 8:00 AM - 10:00 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

QUESTION ONE (30 MARKS)

(a) Define a pfaffian differential form and a pfaffian differential equation

(2 marks)

- (b) Form partial differential equations from
 - (i) $z = ax + by + a^2 + b^2$

(5 marks)

(ii)
$$(x-2)^2 + (y-b)^2 + z^2 = 25$$

(5 marks)

(iii)
$$z = a \log \left[\frac{b(y-1)}{1-x} \right]$$

(5 marks)

By eliminating the arbitrary constants

(c) Obtain the solution of the first order linear partial differential equation

(8 marks)

$$y\frac{\partial u}{\partial x} - x\frac{\partial u}{\partial y} + xu = 0$$

Satisfying the condition u=y when $x^2 + 2y^2 = 4$

- (d) Find the equation of the
 - (i) Tangent plane
 - (ii) Normal line to the surface $x=u,y=v,z=u^2+v^2$ at the point $p_0(1,-1,2)$ (5marks)

QUESTION TWO (20 MARKS)

Solve the following differential equations

(a)
$$y^2zp + x^2zq = y^2x$$

(5marks)

(b)
$$p + 3q = 5z + tan(y - 3x)$$

(5 marks)

(c)
$$(y-z)p + (x-y)q = z - x$$

(5marks)

(d)
$$y^2p - xyz = x(z - 2y)$$

(5marks)

QUESTION THREE (20 MARKS)

- Using the fact coefficients of the differential equation $(y^2 + z^2)dx + xydy + xzdz = 0$ are homogeneous functions in x, y and z of the same degree obtain the general solution.(6marks)
- (b) Show that the first order partial differential equation $xp yq = x, x^2p + q = xz$, are compatible (6marks)
- (c) Solve the equations

(i)
$$p^2 + q^2 = npq$$

(4 MKS)

(4marks)

(ii)
$$1 + p^2 = qz$$

OUESTION FOUR (20 MARKS)

(a) Solve the equations

(i)
$$z^2(p^2 + q^2) = x^2 + y^2$$

[6 marks]

(ii)
$$\frac{p}{x^2} + \frac{q}{y^2} = z$$

[5 marks]

(b) Consider the Lagranges partial differential equation

x(y-z)p + y(z-x)q = z(x-y)dz where $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$ write the corresponding Lagranges auxiliary equations and hence find its integral surface that passes through the curve z = 1, y = x

(9 marks)

[10marks]

QUESTION FIVE (20 MARKS)

(a) Solve the equation

$$2x^4p^2 - yzp - 3z^2 = 0$$

(b) Find the equation of the tangent plane to the hyperboloid $4x^2 - 9y^2 - 9z^2 - 36 = 0$ at the point (3,2,2) (10 marks)