

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2021/2022 ACADEMIC YEAR
FIRST YEAR FIRST SEMESTER
SPECIAL EXAMINATION

FOR THE DEGREE OF MASTER OF SCIENCE IN MATHEMATICS

COURSE CODE:

MAT 824

COURSE TITLE:

OPERATOR THEORY I

DATE:

27/07/2022

TIME: 8:00 AM -10:00 AM

INSTRUCTIONS TO CANDIDATES

Answer Question ONE and Any TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (20 MARKS)

- a. Define the following
 - i. Inner product
 - ii. Norm
- b. Show that if $\langle . \rangle$ is a an inner product on the complex vector space V then $\{(x,y)\}^2 \le \langle x,x \rangle \langle y,y \rangle$ for every $x,y \in V$
- c. Show that if $\langle . \rangle$ is an inner product on the complex vector space V then $||x|| = \langle x, x \rangle^2$ defines a norm on V. (8 marks)

QUESTION TWO (20 MARKS)

- a. Define the following
 - Open and closed sets
 (3 mark)
 - ii. Convergence (2 mark)
 - iii. Compactness (2marks)
- b. Let $\langle . \rangle$ be an inner product on the complex vector space V, with corresponding norm $\|.\|$. Show that $\langle x, y \rangle = \frac{1}{4} \sum_{n=0}^{3} i^{-n} \|x + i^n y\|^2$ for every $x, y \in V$ (4 marks)
- c. Show that if $T \in B(H)$ is such that (x, Tx) = 0 for all $x \in H$ then T = 0. (5 marks)

QUESTION THREE (20 MARKS)

- a. Define the following
 - i. Cauchy sequence (3 mark)
 - ii. Bounded linear transformation (2marks)
- b. Let Y be a subspace of the Banach space X. Show that Y is closed if and only if Y is complete. (5marks)
- c. Show that A linear transformation $T \in L(H; K)$ is continuous if and only if there exists M > 0 such that $||Tx|| \le M||x||$ for every $x \in H$. (6marks)
- d. Show that the set B(H; K) is a subspace of L(H; K) (4marks)

QUESTION FOUR (20 MARKS)

- a. Define the following
 - i. Kernel and range (4 mark)
 - ii. Orthogonal projection (2marks)
- b. Show that if $T \in B(H; K)$ then ker T is a closed subspace of H. (3marks)
- c. If $D \subseteq H$ then D^{\perp} is a closed subspace of H. (5marks)
- d. Show that If $L \subseteq H$ is a closed subspace of H then $L = (L^{\perp})^{\perp}$. (6marks)

QUESTION FIVE (20 MARKS)

- a. Define the following
 - i. Invertible operator

(2 mark)

ii. Spectrum of an operator

2marks)

b. Show that the orthogonal projection $P_L \in B(H)$ and is such that $P_L^2 = P_L = P_L^*$.

(11 marks)

- Let T ∈ B (H; K). Show that there exists at most one operator S ∈ B (K; H) such that ST = I and T S = I.
- d. Let $S \in B(H; K)^{\times}$ and $T \in B(K; L)^{\times}$. Show that the operator $T S \in B(H; L)^{\times}$, with $(T S)^{-1} = S^{-1}T^{-1}$. (2marks)