

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2021/2022 ACADEMIC YEAR
SECOND YEAR SUPPLEMENTARY

EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION

AND BACHELOR OF SCIENCE

MATHEMATICS

COURSE CODE: MAA 211 / MAT 203

COURSE TITLE: VECTOR ANALYSIS

DATE: FRI 15/07/2022 TIME: 8:00 AM - 10:00 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS): COMPULSORY

- a) Define the terms:
 - (2 marks) Scalar product (i)
 - (2 marks) Vector product (ii)
- Find the angle between the vectors $\overrightarrow{A} = 2i + 2j k$ and

$$\vec{B} = 6i - 3j + 2k \tag{6 marks}$$

- (4 marks) c) Given $\phi = 2x^3y^2z^4$, find $\nabla \cdot \nabla \phi$
- Find the work done in moving an object along a straight line from (3,2,-1) to (2,-1,4) in a force field given by $\overrightarrow{F} = 4i-3j+2k$ (5 marks)
- e) Determine the value "a" so that $\overrightarrow{A} = 2i + aj + k$ and $\overrightarrow{B} = 4i 2j 2k$ are (5 marks) orthogonal
- Show that the linearly independent solutions of y'' 2y' + 2y = 0 are $e^x \sin x$ (6 marks) And $e^x \cos x$

QUESTION TWO (20 MARKS)

- (6 marks) a) Find $\nabla \phi$ if $\phi = \log |\vec{r}|$
- b) If $\overrightarrow{A} = 5t^2 i + t j t^3 k$ and $\overrightarrow{B} = \sin t i \cos t j$, find:
 - (4 marks) (i) $\frac{d}{dt} \left(\overrightarrow{A} \bullet \overrightarrow{B} \right)$
 - (4 marks) (ii) $\frac{d}{dt} \left(\stackrel{\rightarrow}{A} \times \stackrel{\rightarrow}{B} \right)$
 - c) Find a unit tangent vector on the curve $x = t^2 + 1$, y = 4t 3,

$$z = 2t^2 - 6t ag{6 marks}$$

QUESTION THREE (20 MARKS)

- a) If $\overrightarrow{A} = xz^3$ $i 2x^2$ yz $j + 2yz^4$ k, find $\nabla \times \overrightarrow{A}$ at point (1,-1,1)(6 marks)
- b) Determine a unit vector perpendicular to the plane of $\overrightarrow{A} = 2i 6j 3k$ and

$$\vec{B} = 4 i + 3 j - k$$

(5 marks)

- c) A particle moves along a curve whose parametric equations are $x = e^{-t}$, $y = 2\cos 3t$ and $z = 2\sin 3t$ where t is the time. Determine:
 - (i) Velocity and acceleration at time t

(6 marks)

(ii) Magnitude of the velocity and acceleration at t = 0

(3 marks)

QUESTION FOUR (20 MARKS)

- a) Prove that $\nabla(F+G) = \nabla F + \nabla G$, where F and G are differential scalar functions of x, y and z (5 marks)
- b) Evaluate: $\left(2i-3j\right)\left[\left(i+j-k\right)\times\left(2i-k\right)\right]$ (3 marks)
- c) Show that $\vec{F} = (2xy + z^3)i + x^2 j + 3xz^2 k$ is:
 - (i) A conservative force field

(4 marks)

(ii) A scalar potential

(3 marks)

d) If $\vec{A} = (3x^2 + 6y)i - 14yz j + 20xz^2 k$, evaluate $\int \vec{A} \cdot d\vec{r}$ from (0,0,0) to (1,1,1)

along the following paths: x = t, $y = t^2$ and $z = t^3$

(5 marks)

QUESTION FIVE (20 MARKS)

- a) If $\vec{V} = \vec{\omega} \times \vec{r}$, prove that $\vec{\omega} = \frac{1}{2} curl \vec{V}$ where $\vec{\omega}$ is a constant vector (5 marks)
- b) A particle moves so that its position vector is given by $\vec{r} = \cos \omega t \, i + \sin \omega t \, j$, where ω is a constant. Show that:
 - (i) The velocity \overrightarrow{V} of the particle is perpendicular to \overrightarrow{r} (5 marks)
 - (ii) The acceleration \vec{a} is directed towards the origin and has a magnitude proportional to the distance from the origin (5 marks)
- c) Prove that $\nabla \bullet \left(\overrightarrow{\phi} \overrightarrow{A} \right) = \left(\nabla \phi \right) \bullet \overrightarrow{A} + \phi \left(\nabla \bullet \overrightarrow{A} \right)$, where ϕ is a function of (x, y, z) (5 marks)

END