

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS **2021/2022 ACADEMIC YEAR**

SECOND YEAR FIRST SEMESTER **SUPLEMETARY EXAMINATIONS**

FOR THE DEGREE OF BED (SCIENCE)

COURSE CODE:

SPH 211

COURSE TITLE: WAVES AND OSCILLATIONS

DATE:

15/72022

TIME: 2:00PM-4:00AM

INSTRUCTIONS TO CANDIDATES

TIME: 2 Hours

Answer question ONE and any TWO of the remaining

KIBU observes ZERO tolerance to examination cheating

QUESTION ONE (30 marks) compulsory

- (a) State any three properties of longitudinal progressive waves. (3mks)
- (b) If the frequency of the tuning fork is 400Hz and the velocity of sound in air is 320m/s, find how far sound travels while the fork completes 30 vibrations. (3mks)
- (c) Define the following terms:
 - i) Vibration (1mk)
 - ii) Phase (1mk)
- (d) Consider a circuit of inductance, L, resistance, R and Capacitance, C through which current, I, passes. Show that:

$$L\ddot{q} + R\dot{q} + \frac{q}{C} = 0 \tag{5mks}$$

- (e) A condenser of capacity $1 \mu F$, an inductor of 0.2 henry and a resistor of 800Ω are joined in series. Show that the circuit is oscillatory. (4mks)
- (f) Given the equation of the damped simple harmonic motion oscillator $m\ddot{x} + r\dot{x} + kx = 0$ Obtain the solution for the equation in terms of resistance term and stiffness term

(10mks)

(g) Suppose in Doppler effect, a source, S' and an observer, O' move in the same direction with velocity u and v respectively. Bring the observer to rest by superimposing a velocity –v on the system to show that O' now registers a frequency:

$$v''' = \frac{v(c - v)}{c - u} \tag{3mks}$$

QUESTION TWO (20 marks)

- (a) Describe the effect of the transient term in the motion of the mechanical forced oscillator (7mks)
- (b) Consider two identical pendulums, each a light rigid rod of length, I supporting a mass, m and coupled by a weightless spring of stiffness k and a natural length equal to the separation of the masses at zero displacement, show that their motion is completely described by:

$$\ddot{Y} + (\omega_0^2 + \frac{2k}{m})Y = 0$$
 where $Y = x - y$ and $\omega_0^2 = \frac{g}{l}$ (13mks)

QUESTION THREE (20 marks)

(a) Suppose that a particle moves under the simultaneous influence of two simple harmonic oscillations of equal frequency, one along the x-axis, the other along the perpendicular y-axis. Describe the subsequent motion due to superposition of the two influences.

(11mks)

- (b) Distinguish between logarithmic decrement and relaxation time (2mks)
- (c) State the properties of longitudinal progressive waves (4mks)
- (d) Define the following terms as used in wave motion:

- i) Rarefaction (1mk) ii) Amplitude (1mk)
- iii) Particle velocity (1mk)

QUESTION FOUR (20 marks)

- (a) State the characteristics of wave motion (4mks)
- (b) A simple harmonic motion is represented by the equation:

 $y = 10\sin(10t - \frac{\pi}{6})$ where y is measured in metres, t in seconds and

phase angle in radians. Calculate:

- i) The frequency (3mks)
- ii) The time period (3mks)
- iii) The maximum velocity (4mks)
- iv) The maximum acceleration (3mks)
- (c) Outline the pieces of information from steady state behavior of a wave (3mks)

QUESTION FIVE (20 marks)

(a) Consider a mechanical oscillator of mass, m, stiffness, k and resistance, r being driven by an alternating force, $F_0 \cos \omega t$, show that the displacement, x, of the oscillator is given by:

$$x = \frac{-iF_0 e^{i(\omega t - \phi)}}{\omega Z_m} \text{ hence discuss its solution}$$
 (16mks)

- (b) State any three information from the steady state behavior of displacement x of a forced oscillator. (3mks)
- (c) State the voltage equation in the electrical case of forced oscillatory motion (1mk)