



(Knowledge for Development)

### KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2021/2022 ACADEMIC YEAR
FIRST YEAR SECOND SEMESTER
SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF MASTER OF SCIENCE IN PURE MATHEMATICS

COURSE CODE:

**MAT813** 

COURSE TITLE:

**FUNCTIONAL ANALYSIS I** 

DATE:

22/07/2022

TIME: 8:00 AM - 10:00 AM

## INSTRUCTIONS TO CANDIDATES

Answer Any other THREE Questions

TIME: 2 Hours

### **QUESTION ONE (20 MARKS)**

- a) Define the following
  - i. Metric space
  - ii. Conjugate component
  - iii. Open ball
  - iv. closed ball
  - v. sphere
- b) Show that  $\mathcal{L}^p$  is a Metric space
- c) Show that a mapping T of a metric space X into a metric space Y is continuous if and only if the inverse image of any open subset of Y is an open subset of X

#### **QUESTION TWO (20 MARKS)**

- a) Define the following terms
  - i. Convergent sequence
  - ii. Bounded sequence
- b) Show that every convergent sequence in a metric space is a Cauchy sequence
- c) Show that the dual space of  $l^l$  is  $l^{\infty}$
- d) State the open mapping theorem

#### **QUESTION THREE (20 MARKS)**

- a) Given f is a bounded linear functional on a subspace Z of a normed space X, show that there exists a bounded linear functional  $\overline{f}$  on X which is an extension of f to X and has the same norm  $||\overline{f}||_x = ||f||_z$  where  $||\overline{f}||_x = \sup |\overline{f}(x)|_{x \in X}, ||x|| = 1$   $||\overline{f}||_z = \sup |\overline{f}(x)|_{x \in Z}, ||x|| = 1$  and  $||f||_z = 0$  in the trivial case  $z = \{0\}$
- b) Given X is a normed space and  $x_0 \neq 0$  is any element of X, show that there exists a bounded linear function  $\overline{f}$  on X such that ||f|| = 1 and  $\overline{f}(x_0) = ||x_0||$

#### **QUESTION FOUR (20 MARKS)**

- a) Given  $(T_n)$  is a sequence of bounded linear operators  $T_n: X \to Y$  from a Banach space X into a normed space Y such that  $(||T_nx||)$  is bounded for every  $x \in X$  say  $||T_nx|| \le c_n$  where  $c_n$  is a real number. Show that the operator of the norm  $||T_n||$  is bounded. That is, there is a c such that  $||T_n|| \le c$ , n = 1,2,3,...
- b) Given  $(x_n)$  is a weakly convergent sequence in a normed space X, say  $x_n \stackrel{w}{\to} x$  show

- The weak limit x of  $(x_n)$  converges weakly to x i.
- ii. The sequence  $||(x_n)||$  is bounded

# **QUESTION FIVE (20 MARKS)**

- a) Define the following terms
  - i. Uniformly operator convergent
  - ii. Strongly operator convergent
  - iii. Weakly operator convergent
- b) Show that an A-summability method with matrix  $A = (\alpha_{nk})$  is regular if and only if
  - $\lim_{n\to\infty} \propto_{nk} = 0 \text{ for } k = 1,2.....$
  - $\lim_{n\to\infty} \textstyle \sum_{k=1}^{\infty} \propto_{nk} = 0$ ii.
  - $\sum_{k=1}^{\infty} |\propto_{nk}| \le r$  for n=1,2 where r is a constant which does not depend on n iii.