

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

SUPPLEMENTARY/SPECIAL EXAMINATIONS YEAR TWO SEMESTER ONE EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF SCIENCE COMPUTER SCIENCE

COURSE CODE

: CSC 216

COURSE TITLE

DIGITAL AND ANALOGUE

COMMUNICATION SYSTEM [B]

DATE: 21/07/2022

TIME: 08.00 A.M - 10.00 A.M

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTIONS ONE AND ANY OTHER TWO.

QUESTION ONE (COMPULSORY) [30 MARKS] [3 marks] Define sampling and state the sampling theorem State two advantages and two disadvantages of frequency modulation over amplitude [4 marks] modulation? c) In a certain DSB-FC AM scheme, the instantaneous voltages of modulating signal and carrier are $20 \sin \omega_m t$ and $40 \sin \omega_m t$, respectively. Determine: [2 marks] the modulation index [1 mark] ii. percentage modulation the maximum amplitude of the resulting upperside band. [2 marks] iii. [4 marks] d) Define Pulse Amplitude Modulation (PAM) and state two demerits of PAM. With the help of a suitable, distinguish between an analogue signal and a digital signal. [4 marks] [2 marks] Define baseband transmission [1 mark] i. Define bandwidth 2) Name and explain any two factors that influence the bandwidth of a signal. [4 marks] ii. h) Describe the following types of noise: [2 marks] i. Thermal noise [2 marks] Shot noise 11. [2 marks] iii. Partition noise **QUESTION TWO [20 MARKS]** a) Describe Phase Modulation (PM) in analogue communication. Use suitable waveform of the [6 marks] carrier, message and modulated signals to illustrate. b) Clearly, explain the following modulation techniques: [2 marks] i. Frequency Division Multiplexing [2 marks] ii. **WDM** [2 marks] iii. TDM

c) A certain input signal is given as $x(t) = \frac{1}{2\pi}\cos(5000\pi t)\cos(2000\pi t)$. Noting that $2\cos\omega_1 t\cos\omega_2 t = \cos(\omega_1 t + \omega_2 t) + \cos(\omega_1 t - \omega_2 t)$, calculate:

i. the Nyquist rate [6 marks]

ii. the Nyquist interval for the signal [2 marks]

		QUESTION THREE [20 MARKS]		
a)	State to	wo merits of digital modulation techniques:	[2 marks]	
b)	Highli	ght the following digital modulation techniques:		
	i.	Synchronous Time Division Multiplexing	[2 marks]	
	ii.	Asynchronous Time Division Multiplexing	[2 marks]	
c)	With th	ne help of block diagrams, explain Pulse Code Modulation	[6 marks]	
d)	d) A certain radio station uses an FM carrier frequency of 99.5MHz that is modulated by			
	wave v	with a resulting frequency deviation of 20kHz. Determine:		
	i.	the carrier swing of the FM signal	[2 marks]	
	ii.	the highest frequency reached by the FM signal	[2 marks]	
	iii.	the lowest frequency reached by the FM signal	[2 marks]	
	iv.	the modulated index	[2 marks]	
		QUESTION FOUR [20 MARKS]		
a)	A given communication channel with an input resistance of $20k\Omega$ has a bandwidth of $0.9MHz$			
	and operates at 300Kelvins. Take the Boltzmann's constant = 1.33×10^{-23} joule/kelvin.			
	Calculate the:			
	i.	Power spectrum density	[3 marks]	
	ii.	average noise power, P _n	[3 marks]	
	iii.	r.m.s. noise voltage at input.	[3 marks]	
b)	Describe the following three sampling techniques. Include suitable diagrams to illustrate to		ustrate to	
	answers.			
	i.	Instantaneous (or ideal) sampling	[4 marks]	
	ii.	Natural sampling	[4 marks]	
	iii.	Flat-top sampling	[3 marks]	

QUESTION FIVE [20 MARKS]

a)	i.	Draw a well labelled cross-sectional diagram of a fiber optic cable.	[2 marks]
	ii.	Explain the function of each part in the diagram above	[4 marks]

- b) A 0.981MHz carrier frequency is modulated with two audio frequencies: 3.5 kHz and 2.1 kHz.

 Determine the frequencies present in the output signal. [6 marks]
- c) Describe the working principle of an R/2R Digital-to-Analogue Convertor (DAC) [8 marks]