

KIBABII UNIVERSITY

(KIBU)

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

END OF SEMESTER EXAMINATIONS YEAR THREE SEMESTER ONE EXAMINATIONS

FOR THE DEGREE OF (COMPUTER SCIENCE)

COURSE CODE: CSC 350E

COURSE TITLE: SIGNALS AND SYSTEMS I

DATE: 16/05/2022 TIME: 09.00 A.M - 11.00 A.M

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE AND ANY OTHER TWO (2) QUESTIONS

QUESTION ONE (COMPUSORY) [30 MARKS]

a)	Describe the following terms: -	
	i) Signal	[2marks]
	ii) System	[2marks]
b)	Differentiate between the following terms: -	
	i) Periodic and non-periodic signals.	[4marks]
	ii) Continuous-time signal x(t) and Discrete-time signal x[n]	[6marks]
	iii) Even and odd signals.	[4marks]
c)	Explain any THREE operations performed on a signal.	[6marks]
d)	Given the signal $x(t) = e^{-3t}u(t)$, determine	
	i) The Fourier Transform $X(j\omega)$	
	ii) The magnitude $ X(j\omega) $	
	iii) The phase $\angle X(j\omega)$	[6marks]
	QUESTION TWO [20 MARKS]	
a)	Convert the following complex numbers from Cartesian to polar form	
	i) l+j;	
	ii) 1-2j.	[4marks]
b)	tatic linearity and sinusoidal fidelity are concepts used in linear systems. Explain these concepts	
	with the aid of diagrams	[4marks]
c)	Show that the following system linear-time-invariant	
	y(t) = x(t)g(t), where $x(t)$ and $y(t)$ denote the input and output, respectively.	[3marks]
d)	Differentiate between energy and power signal.	[4marks]
e)	Show that the discrete time system described by the input-output relationship $y[n] = nx[n]$	
	linear.	[5marks]

QUESTION THREE [20 MARKS]

a) Differentiate between a continuous and discrete time signals.

[4marks]

b) Is a discrete time signal described by the input output relation $y[n] = r^n x[n]$ time invariant.

[4marks]

c) Evaluate, the magnitude $|(2 - j2)^3|$ and the angle $\angle (-1 - j)^2$.

[8marks]

d) For the signal x(t) shown in Fig. 3d, sketch x(2t-1).

[4marks]

Figure 3.1

QUESTION FOUR [20 MARKS]

a) Determine if the following signals are periodic. For those that are periodic, what is the fundamental period?

i)
$$x[n) = e^{-\frac{4}{\pi}n}$$

[2marks]

ii)
$$x[n) = e^{-\frac{2}{8}\pi n}$$

[2marks]

b) Describe a time invariant systems

[4marks]

c) Compute the polar form of the complex signals

[6marks]

- i) $e^{j(1+j)}$
- ii) $(1+j)e^{-j\pi/2}$.
- d) Compute the rectangular form of the complex signals

[6marks]

- i) $2e^{j5\pi/4}$
- ii) $e^{-j\pi} + e^{j6\pi}$.

Page 3 of 4

QUESTION FIVE [20 MARKS]

a) Consider the system shown in Figure 5a. Determine whether it is (i) memoryless, (ii) causal, (iii) linear, (iv) time-invariant, or (v) stable. [6marks]

Figure 1

b) Outline the properties of a system.

[4marks]

- c) Suppose x[n] is a discrete-time signal, and let y[n]=x[2n].
 - i) If x[n] is periodic, is y[n] periodic? If so, what is the fundamental period of y[n] in terms of the fundamental period of x[n]? [3marks]
 - ii) If y[n] is periodic, is x[n] periodic? If so, what is the fundamental period of x[n] in terms of the fundamental period of y[n]? [3marks]
- d) Sketch the signals
 - i) u[n-3]

[2marks]

ii) u[2n-3]

[2marks]