(183)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

THIRD YEAR FIRST SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF B.ED (SCIENCE) AND BSC (PHYSICS)

COURSE CODE: SPH 3

SPH 316/SPC 314

COURSE TITLE:

ATOMIC PHYSICS

DATE:

25/05/2022

TIME: 9:00AM-11:00AM

INSTRUCTIONS TO CANDIDATES

TIME: 2 HOURS

Answer question ONE and any TWO of the remaining

KIBU observes ZERO tolerance to examination cheating

QUESTION ONE [30 MARKS]

[5 marks] a) Define the following terms: Hund's rule, Auger effect, Lamb shift, Lande's interval rule and anomalous Zeeman effect. [3 marks] b) Calculate the hyperfine splitting in hydrogen in a ground state. c) Obtain an expression of the average speed of an electron in first Bohr orbit of an [4 marks] atom of atomic number Z. d) What is the magnetic moment of an atom in the state ${}^{3}P_{0}$? [3 marks] e) Couple a p-state and an s-state via j-j coupling. [4 marks] What is Lande's g-factor? Find the Lande's g-factor of the state ²p_{3/2}. [4 marks] f) g) State Moseley's law hence find wavelength K_{α} line in cobalt [4 marks] $[Z = 27 \text{ and } R = 1.097x10^7 m^{-1}]$ h) Compute the separation of the outer lines, two lines of a normal Zeeman pattern [3 marks] for spectral lines of wavelength 612nm in a magnetic field of 10kg. $[1g = 10^{-4}T, e = 1.602x10^{-19}C, m_e = 9.11x10^{-31}kg \text{ and } c = 3.0x10^8m/s]$ **QUESTION TWO [20 MARKS]** [8 marks] a) Describe an experimental arrangement for determining the characteristic lines in an X-ray spectrum. b) From measurement of X-ray emission spectra a variety of elements, Moseley was [4 marks] able to assign an atomic number Z to each of the elements. Explain explicitly how this assignment can be made. c) Discrete X-ray lines emitted from a certain target cannot in general be observed [4 marks]

QUESTION THREE [20 MARKS]

a) Give main conclusions on the present day atomic model.

inconsistent with classical electromagnetic theory?

[14 marks]

[6 marks]

[4 marks]

b) Calculate the radius and frequency of an electron in the Bohr's first orbit in hydrogen atom. $[\varepsilon_0 = 8.85x10^{-12}F/m, m_e = 9.11x10^{-31}kg, e = 1.6x10^{-19}C, h = 6.625x10^{-34}Js]$

as absorption lines in the same material. Explain why, for example, the K_{α} lines

bombarded by electrons if given energy. What feature of the spectrum is

d) Explain the origin of the continuous spectrum of X-ray emitted when a target is

cannot be observed in the absorption spectra of heavy elements.

QUESTION FOUR [20 MARKS]

Explain how the following experiments led to the development of atomic physics.

a) Stern-Gerlach experiment.

[7 marks]

b) Franck-Hertz experiment.

[7 marks]

c) Lamb-Rutherford experiment.

[6 marks]

QUESTION FIVE [20 MARKS]

a) Calculate the following: - the magnitude of orbital, spin and total angular momenta and also the angles between l and s for p electron in a one electron atom where l = 1 and $s = \frac{1}{2}$.

[14 marks]

b) Find the values of S, L and J in the following states 1_{S_0} , 3_{P_2} and $2_{D_{3/2}}$.

[6 marks]