

(Knowledge for Development)

KIBABII UNIVERSITY UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR

END OF SEMESTER EXAMINATIONS FOURTH YEAR SECOND SEMESTER SPECIAL/SUPPLEMENTARY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

MATHEMATICS

COURSE CODE:

MAT 424

COURSE TITLE:

ORDINARY DIFFERENTIAL EQUATIONS III

DATE: 18/01/2022

TIME: 2:00 - 4:00 PM

INSTRUCTIONS

Answer Questions ONE and Any other TWO

QUESTION ONE [30MKS]

- a. Give the definition of a fundamental matrix for the system of equation (2mks)
- a. Give the definition of a fundamental find the definition of a fundamental find the following systems and give their types
 b. Find the limit cycle of the following systems and give their types
 - i. r' = r(r-1)(r-2), $\theta' = 1$
 - ii. $r' = r(r-1)^2$, $\theta' = 1$
- c. Find the general solution for the system of differential equations (5mks)

$$x' = x + y$$
$$y' = -2x + 4y$$

- d. Define the flow of differential equations. (3mks)
- e. Consider the system, $x' = -x + 2x^2 + y^2$, $y' = -y + y^2$. Determine the basin of attraction (4mks)
- f. Describe the stability of the zero solution of the system

$$\frac{dx}{dt} = x + 3y, \quad \frac{dy}{dt} = 2x$$

- Using Lyapunov function (5mks)
- g. Solve the initial value problem x' = x, x(0) = 1 by Picard iteration (6mks)

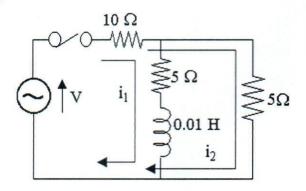
QUESTION TWO [20MKS]

- a. Let $A = \begin{pmatrix} 6 & 3 & -2 \\ -4 & -1 & 2 \\ 13 & 9 & -13 \end{pmatrix}$ (12mks)
 - i. Evaluate e^{tA}
 - ii. Solve the initial value problem $\vec{X}' = A\vec{x}$, $\vec{x}(0) = \begin{bmatrix} -2\\1\\4 \end{bmatrix}$
- b. Assume that X(x,t) is continuous and satisfies the Lipschitz condition on the interval $|t-a| \le T$ for all x, y. then the initial value problem x' = X(x,t), x(a) = c has a unique solution on the interval $|t-a| \le T$. Prove

QUESTION THREE [20MKS]

- a. Show that the solution of the system $\frac{dy}{dx} = y^2$, y(1) = -1 can be extended (10mks)
- b. In the two-mesh network shown below, the switch is closed at t = 0 and the voltage source is given by $V = 150 \sin 1000t$ V. Find the mesh currents i_1 and i_2 as given in the diagram.

(10mks)



QUESTION FOUR [20MKS]

- a. Define the term exponential stability (3mks)
- b. What are the conditions necessary for a path C that approaches the critical point $P(x_0, y_0)$ (2mks)
- c. Investigate the stability of the zero solution of the system whose general solution is given by

$$x(t) = 3C_1 + C_2 e^{-t}$$

$$y(t) = 2C_1 t^2 e^{-t} - C_2 \cos t$$
(7mks)

d. Show that the point (x_*, y_*) with coordinates $x_* = 2$ and $y_* = 5$ is the only equilibrium point and is a repeller for the following system of ODEs (8mks)

$$\begin{cases} x' = 10 - x - \frac{4xy}{1+x^2} \\ y' = x \left(1 - \frac{y}{1+x^2} \right) \end{cases}$$

QUESTION FIVE [20MKS]

- a. Define the Lipchitz condition (2mks)
- b. Find all the functions $y_1 \& y_2$ such that (5mks)

$$y_1' = y_1 - 3y_2$$

 $y_2' = y_1 + 5y_2$

- c. Consider, $\dot{x} = x^2$, x(0) = 1. Show that the function $f(x) = x^2 \in C^1(\square)$ and the initial value problem has a unique solution. (5mks)
- d. Consider the initial value problem $\dot{x}=t\,x,\ x(0)=1$, study the continuity of the solution.

(8mks)