

(Knowledge for Development)

KIBABII UNIVERSITY UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR

END OF SEMESTER EXAMINATIONS THIRD YEAR SECOND SEMESTER SPECIAL/ SUPPLEMENTARY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

MATHEMATICS

COURSE CODE:

MAA 324

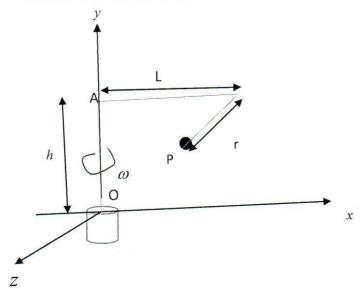
COURSE TITLE:

DYANAMICS 2

DATE:

18/01/2022

TIME: 2:00 - 4:00 PM


INSTRUCTIONS

Answer Questions ONE and Any other TWO

This paper consists of 4 printed pages. Turn over

QUESTION ONE [30MKS]

- a. The position of an electron is given by $\vec{r} = 3ti 4t^2j + 2k$. (5mks)
 - i. What is \vec{v} at t=2s in vector notation
 - ii. What are the magnitude and direction of \vec{v} just then
- b. A satellite moves at constant speed in a circular orbit about the center of earth and near the surface of earth. If the magnitude of its acceleration is $g=9.81 \text{m/s}^2$, find its speed and the time for one complete revolution. (4mks)
- c. A system of particles consists of three masses $m_1 = 0.5kg$, $m_2 = 2kg$, $m_3 = 5kg$ located at P₁(-3, 1, 2), P₂(0, 1, 2) and P₃(-1, 3, 0) respectively. Find the position vectors of the center of mass of the system. (4mks)
- d. A spacecraft S' is at rest, eventually heading toward alpha when spacecraft S passed it at a relative speed c/2. The captain of S' sends a radio signal that lasts 1.2s according to that ship clock. Use the Lorentz transformation to find the time interval of the signal by the communications officer of spaceship S. (5mks)
- e. An airplane propeller is rotating with uniform angular speed of 1800rpm. The blades of the propeller are 6ft long. Determine the linear speed of a point 2ft from the axis and 6ft from the axis. (5mks)
- f. The rod shown rotates about the y-axis at angular speed 10rad/s and accelerates at the rate of 2rad/s². The dimension L=h=2m and r=1m. There is a small mass P glued to the rod at its free end. At the instant shown, the three segments of the rod parallel to the three axes. (7mks)
 - i. Find the velocity of point P at the instant shown
 - ii. Find the acceleration of point P at the instant shown

QUESTION TWO [20MKS]

This paper consists of 4 printed pages. Turn over

- a. A riffle is aimed horizontally at a target 30m away. The bullet hits the target 1.9cm below the aiming point. (6mks)
 - g. What is the bullets time of flight?
 - ii. What is the muzzle velocity?
- b. Two particles of masses m1=1kg and m2=2kg have position vectors given by $\vec{r}_1 = (2t\hat{i} 4\hat{j})m$ and $\vec{r}_2 = (5t\hat{i} 2t\hat{j})m$ respectively where t is time. Determine the velocity and linear momentum of the center of mass of the two-particle system at any time and at t=1s (4mks)
- c. In a particle accelerator, when electrons accelerated to 0.999c collide with a target, the collision produces a muon which moves in the direction of the electron with a speed of 0.95c. What is the muon's momentum in the lab frame and in the frame of the electron beam? ($c = 3.0 \times 10^8 \, m/s$, mass of muon = $1.9 \times 10^{-28} \, kg$) (6mks)
- d. A stationery person observes that rain is falling vertically down at 30km/h. a cyclist is moving on the level road at 10km/h. in which direction should the cyclist hold his umbrella to protect himself from rain? (4mks)

QUESTION THREE [20MKS]

- a. A fly wheel of diameter 2ft spins about the axis through its center and perpendicular to the plane of the wheel at 1000rpm. The wheel weighs 20lbf (pound-force). Assuming to be a thin, uniform disk. Find its kinetic energy. (6mks)
- b. A pendulum arm has a negligible mass and length D. a mass M is attached to one end of the arm and the other is attached to a support that allows the pendulum to pivot freely in the x-z plane. The angle between the pendulum arm and the vertical is ϕ find the oscillator of the pendulum by Lagrange equation. (8mks)
- The angular speed of a motor wheel is increased from 1200rpm to 3120rpm in 16 s.
 determine the angular acceleration and number of revolutions the engine makes during
 this time. (6mks)

QUESTION FOUR [20MKS]

a. Derive the Lagrange equation

(10mks)

b. An electron velocity has velocity v=0.990c.

(6mks)

- i. Calculate the kinetic energy of the electron
- ii. Compare the result with the classical value for kinetic energy at this velocity (mass of electron is $9.11\times10^{-31}kg$, $c=3.0\times10^8 \, m/s$)
- c. Determine the virtual work δW done by the force $\vec{F}=4\hat{i}+3\hat{j}$ where I and j are the unit vectors in the x and y directions over a virtual displacement δq with the constants; $x=r\cos\theta$, $y=r\sin\theta$. Use the generalized coordinates $q_1=r$ and $q_2=\theta$ (4mks)

QUESTION FIVE [20 MKS]

This paper consists of 4 printed pages. Turn over

- a. Suppose an object is dropped from a tower of height h at the equator, when will it land relative to the 'plumb line' at the release point? (8mks)
- A delighted math's graduate throws her cap into the air with an initial velocity of 24.5m/s at 36.9° above the horizontal. The cap is later caught by another student. Find
 - i. The total time the cap is in the air
 - ii. The total horizontal distance travelled (ignore air resistance)
- c. A car drives north at 2.5m/s for 6s, then turns east and drives at 3m/s for 12s. What is the magnitude and direction of the average velocity for the trip?

(5mks)