

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER
SUPPLEMENTARY/SPECIAL EXAMINATIONS

FOR THE DEGREE OF B.SC (CHEMISTRY)

COURSE CODE: SCH 221

COURSE TITLE: ANALYTICAL CHEMISTRY I

DATE: 18/1/2022

TIME: 2-4PM

INSTRUCTIONS TO CANDIDATES:

Answer question ONE and any TWO of the remaining

KIBABII observes ZERO tolerance to examination cheating

Question 1 [30 Marks]

i.	Differentiate between accuracy and precision	[4 Marks]
ii.	Discuss the importance of standard deviation in analytical measurements	[4 Marks]
iii.	Describe gross error and highlight two characteristics	[5 Marks]
iv.	Differentiate between systematic and random errors	[4 Mark]
v.	List three ways to eliminate systematic errors	[3 Marks]
vi.	Explain the importance of fundamental analysis	[3 Marks]
vii.	Describe two types of samples	[4 Marks]
viii.	List three fields where analytical data may be utilized	[3 Marks]

Question 2 [20 Marks]

i. Differentiate between end point and equivalence point [4 Marks]

ii. A solution of approximately 0.1 M HCl is standardized with Na₂CO₃. 0.1472 g of Na₂CO₃ requires 23.7 mL of the HCl to reach endpoint. The HCl is then used to titrate a solution of NaOH. 25.0 mL of the base solution is titrated to endpoint by 15.9 mL of the acid. Determine the concentration of NaOH. [16 Marks]

Question 3 [20 Marks]

i. Explain the difference between titrimetric and gravimetric analysis [4 Marks]

ii. A 0.649-g sample containing only K₂SO₄ (174.27 g/mol) and (NH₄)₂SO₄ (132.14 g/mol) was dissolved in water and treated with Ba(NO₃)₂ to precipitate all sulfate as BaSO₄ (233.39 g/mol). If 0.977 g of precipitate was formed, what is the mass percent K₂SO₄ in the sample?

[12]

Marks]

The reaction between ethanol and an organic acid (eg ethanoic acid) takes about 6 hours at boiling point. The reaction achieves a conversion of approximately 70%. Comment of the suitability of this reaction as a titration reaction.

[4 Marks]

Question 4 [20 Marks]

- i. Describe the process of crystallization [8 Marks]
- ii. The analysis of % CaO present in a CaCO₃ resulted in the following data after several analyses. 56.04, 55.95, 56.23, 56.08 and 56.00.
 - a. Determine the standard deviation and variance of the data [5 Marks]
 - b. Identify the statistical test to be applied in the validation of all data points

[2 Marks]

c. Determine whether the data contains outliers and whether or not they should be eliminated [5 marks]

Question 5 [20 Marks]

- Discuss the importance of defining an analytical problem [4 Marks]
- Explain the importance of designing an experimental procedure before beginning any [4 Marks]

- List any factors to consider when designing an experimental procedure iii. iv.
 - List three analytical methods which apply electromagnetic radiation

[6 Marks]

[6 Marks]

Table of Critical Values of Q

N	Q _{crit} (CL:90%)	Q _{crit} (CL:95%)	Q _{crit} (CL:99%)
3	0.941	0.970	0.994
4	0.765	0.829	0.926
5	0.642	0.710	0.821
6	0.560	0.625	0.740
7	0.507	0.568	0.680
8	0.468	0.526	0.634
9	0.437	0.493	0.598
10	0.412	0.466	0.568

VIIIA	2	He	4.00	10	Z	20.18	18	Ar	39.95	36	X	2000	00.00	24	Xe	131.29	86	Dn	(111)	(444)		
		17	VIIA	6	Ţ	19.00	17	C	35.45	35	Rr	70.07	06.67	22	_	126.91	85	Δŧ	(010)	form		
		16	VIA	×	C	16.00	16	S	32.06	34	S	30 %	2	70]e	127.60	84	Do	(000)			
		15	VA	7	Z	14.1	15	Ь	30.97	33	Ac	24 92	-	7 6	Sp	121.75	83	R:	208.98			
LZ	1	14	IVA	9	C	12.01	14	Si	28.09	32	95	72 50	00	2	Sn	118.71	82	bh	207.2			
ME		13	W H	S	В	10.81	13	Al	26.98	31	5	69.72	40	÷ ,	=	114.82	81	E	204.38			
ELF								12	8	30	Zn	65.39	48	2 (3	112.41	80	Hg	200.59			
HE								Ξ	<u>B</u>	29	Cu	63.55	47		Ag	107.87	79	Au	196.97	===	Rø	(223)
JF T								10		28	Z	58.69	46	7	Fa	106.42	78	Pt	195.08	110	Ds	(172)
LE								6	- VIIIB	27	ပိ	58.93	45	1	KE	102.91	77	Ir	192.2	601	M	(268)
LAB								œ	Ц	56	Fe	55.85	44	0.5	NA N	101.1	92	Os	190.2	108	Hs	(277)
)IC								7	all [25	Mn	59.94	43	Ę	1	(86)	75	Re	186.21	107	Bh	(564)
IOI								9		24	Ċ	52.00	42	M	OIVI	95.94	74	>	183.85	901	Sg	(266)
PERIODIC TABLE OF THE ELEMENTS								5 5		23	>	50.94	41	1	2	92.91	73	La	180.95	105	Dp	(262)
								4 9		22	ij	47.90	40	7.	1 2	777.16	72	H	178.49	104	Rf	(261)
			_					۳ <u>۾</u>		21	Sc	44.96	39	>	₹ 00	16.66	57	*La	138.91	68	†Ac	227.03
		2 4		- 1	Re	10.6	12	Mg	24.30	20	Ca	40.08	38	3	300	70.70	26	Ba	137.33	88	Ra	226.02
₹ -		1000	anuvi o		П	6.94	= ;	Na S	66.77	6]	¥	39.10	37	Rh	65.17	16.00	გ (S	132.91	87	Ή	(223)