

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR

FOURTH YEAR FIRST SEMESTER SUPPLEMENTARY EXAMINATIONS

FOR THE DEGREE OF BSC (PHYSICS)

COURSE CODE:

SPH 410

COURSE TITLE:

MATHEMATICAL PHYSICS

DATE: 13/1/2022

TIME: 11-1PM

INSTRUCTIONS TO CANDIDATES

TIME: 2 Hours

Answer question ONE and any TWO of the remaining

KIBU observes ZERO tolerance to examination cheating

Question One

- (a) State the associative and closure properties of the elements {X,Y,Z,...} belonging to a group G. (2 marks)
- (b) Define the inverse X^{-1} of an element X belonging to a group G. (2 marks)
- (c) Show that for the elements $\{X, Y, Z, ...\}$ belonging to a group G,

$$(X * Y * Z)(Z^{-1} * Y^{-1} * X^{-1}) = I.$$
 (3 marks)

- (d) Given the rotation matrix $(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$, show that $M(0) = I_2$. (3 marks)
- (e) Show that the shortest curve joining two points is a straight line. (4 marks)
- (f) Two rings, each of radius a, are placed parallel with their centres 2b apart and on a common normal. An open-ended axially symmetric soap film is formed between them. Find the shape assumed by the film. (4 marks)
- (g) From Fermat's principle deduce Snell's law of refraction at an interface. (4 marks)
- (h) Using Hamilton's principle derive the wave equation for small transverse oscillations of a taut string. (4 marks).

Question Two

- (10 marks) (a) Define a group G.
- (b) Given the expression $X^{-1} * (X * X^{-1})$, show that $X * X^{-1} = I$, where for a group $G, X \in G$, $X^{-1} \in G$ is the inverse of X and $I \in G$ is the identity element. (5 marks)
- (c) A rotation matrix $M(\theta)$ is defined as $M(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ where $0 \le \theta \le 2\pi$. Show that $M(\theta)M(\varphi) = M(\theta + \varphi)$. (5 marks)

Question Three

- (a) Define an Abelian group. (2 marks)
- (b) Given the set $S = \{1,3,5,7\}$ under multiplication (mod 8):
 - Show that the set S forms a group. (10 marks) i)
 - Generate a multiplication table for the group S. (2 marks) ii)
- (c) Define a homomorphism and state any two of its consequences. (6 marks)

Question Four

(a) Find the closed convex curve of length l that encloses the greatest possible area. (10 marks)

(b) A frictionless wire in a vertical plane connects two points A and B, A being higher than B. Let the position of A be fixed at the origin of an xy-coordinate system, but allow B to lie anywhere on the vertical line $x = x_0$. Find the shape of the wire such that a bead placed on it at A will slide under gravity to B in the shortest possible time. (10 marks)

Question Five

- (a) A find the shape assumed by a uniform rope when suspended by its ends from two points at equal heights. (10 marks)
- (b) Show that $\int_a^b y_j' p y_i' y_j q y_i dx = \lambda_i \delta_{ij}$ (10 marks)