

UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR

SPECIAL/SUPPLEMENTARY EXAMINATIONS SECOND YEAR SECOND SEMESTER

FOR DEGREE IN COMPUTER SCIENCE

COURSE CODE: CSC 220

COURSE TITLE: AUTOMATA THEORY

DATE: 13/01/2022 TIME: 02.00 P.M - 04.00 P.M

INSTRUCTIONS

ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS.

QUESTION ONE (COMPULSORY) [30 MARKS]

a) Define the following terms as used in automata theory.

[2Mks]

- Transducer i.
- Automata ii.
- b) DFA and NDFA are Finite Automata. Sighting reasons, which one is superior. [4Mks]
- c) Given the following state diagram, draw its transitional table.

d) Convert the following NDFA to DFA?

[6Mks]

- e) Minimize the following DFA resulting from d) above using Equivalence Theorem showing tables after each step. [4Mks]
- f) Describe criteria used to decide on the equivalence of two states.

QUESTION TWO [20 MARKS]

a) Define the following terms.

[2Mks]

- i) Moore Machine (Mo)
- ii) Grammar
- b) Describe conditions that must be satisfied for a grammar to be in Type-1.

[4Mks]

c) Convert the following Moore Machine to Mealy Machine.

[6Mks]

}), show how you can $S \rightarrow 0S1S \mid 1S0S \mid \varepsilon$ d) Given Grammar G=({S},{0,1},S,{ [4Mks] derive String 1001101100

QUESTION THREE[20 MARKS]

a) Explain the following concepts used in Automata Theory.

[2Mks]

- a. Regular Grammar
- b. Null Moves
- b) Give Regular Set generated by the following Regular Expression.

[4Mks]

- i) (a*b)*ab*bb
- ii) (0+1)*1(0+1)+(0+1)*1(0+1)(0+1)
- c) Arden's Theorem is used to find a regular expression of a finite automaton, using this theorem [6Mks] construct a regular expression corresponding to the following automata.

d) Construct a Finite Automaton from the following Regular Expression.

[4Mks]

(0+1)*1(0+1)+(0+1)*1(0+1)(0+1)

[4Mks]

QUESTION FOUR [20 MARKS]

a) Explain the following terms as used in Automata Theory.

[4Mks]

- i) Context-free grammar
- ii) Sentential Form
- b) Let any set of production rules in a CFG $S\rightarrow 0S1S/1S0S/\epsilon$, generate Rightmost derivation of 1001101100 and draw equivalent derivation tree. [6Mks]
- c) Remove Unit Productions from the following production rules.

[6Mks]

- $S \rightarrow WX$
- $W \rightarrow aWb \mid X$
- $\begin{array}{ccc} X & \rightarrow & XY \mid Z \\ Y & \rightarrow & cY \end{array}$
- $Z \rightarrow dZd \mid d$
- d) Convert the following Grammar G to Chomsky Normal Form.

[4Mks]

$$S \rightarrow ABa \mid AC$$

$$A \rightarrow Ab \mid a$$

$$B \rightarrow b |C| \lambda$$

$$C \rightarrow aa \mid AA$$

QUESTION FIVE [20 MARKS]

a) Define the following terms.

[2Mks]

- i) Push Down Automata (PDA)
- ii) Turing Machine(TM)
- b) Explain how context free language is accepted by PDA?

[8Mks]

- c) Show that L is recognized by Turing Machine with a two infinite tape if and only if it is recognized by a Turing Machine with a one way infinite tape. [8Mks]
- d) Explain the role of checking of Symbols in a Turing Machine.

[2Mks]

