

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2021/2022 ACADEMIC YEAR
FORTH YEAR FIRST SEMESTER
MAIN EXAMINATION
FOR DEGREE OF BACHELOR OF
SCIENCE MATHEMATICS

COURSE CODE: MAP 412

COURSE TITLE: MEASURE THEORY

DATE: 20/05/2022 **TIME**: 9:00 AM - 11:00 AM

INSTRUCTIONS TO CANDIDATES

Answer question ONE and any other TWO questions

TIME: 2 Hours

QUESTION ONE (20 MARKS)

- a) Define the following terms
 - i. Ring
 - ii. Algebra
 - iii. $\sigma ring$
- b) Given that R is a ring of a set Y. show that the monotone class of R, M(R) coincides with the ring generated by R, G(R) ie M(R) = G(R)
- c)
- i. Show that if μ_F is the contradiction of a measure, μ by a fixed set F in a ring R, then μ_F is a measure in R
- ii. Show also if $\mu_F < \infty$, then μ_F is a finite measure

QUESTION TWO (20 MARKS)

- a) Define the following terms
 - i. Hereditary
 - ii. Hereditary $\sigma ring$
 - iii. Outer measure
 - iv. v-measure
- b) Show that if v is an outer measure, then the class M of v -measurable sets is a ring
- b) Show that if μ is measurable on a ring R, and M is the class of all M^* -measurable sets, then $G(R) \subset M$ and the restriction of M^* to G(R) is a measure $\bar{\mu}$ extending μ

QUESTION THREE (20 MARKS)

- a) Define the following terms
 - i. Lebesque measurable
 - ii. Lebesque measure
- d) Show that if $\alpha_n \uparrow \alpha$ and $\beta_n \uparrow \beta$ then $\alpha_n + \beta_n \uparrow \alpha + \beta$
- b) Show that if (μ_j) is ans increasingly directed family of measures on a ring R, and μ is the set function on R defined by the formula $\mu(E) = LUB\mu_j(E)$ then μ is a measure on R

QUESTION FOUR (20 MARKS)

- a) Show that if f_n is a sequence of integrable functions such that $f_n \ge 0$ a.e and $\lim\inf \int f_n \, du < \infty$ then there exists an integrable function f such that $f = \lim\inf f_n$ a.e and one has $\int f \, du \le \liminf \int f_n \, du$
- b) Suppose $f_n | \le |f| \ a.e \ (n = 1, 2, ...)$ where the f_n and g are integrable functions the there exists an integrable function f such that $f = \liminf f_n$ a.e. moreover, $|f| \le |g| a.e$ and $\int f \ du \le \liminf \int f_n \ du$

QUESTION FIVE (20 MARKS)

- a) Show that if $\alpha_n \uparrow \alpha$ and $\beta_n \uparrow \beta$ then $\alpha_n \beta_n \uparrow \alpha \beta$
- b) Show that if $f, g \in L^2$ then $|(f|g)| \le ||f||_2 + ||g||_2$ (Cauchy -schwarz inequality)
- c) Show that if $f, g \in L^2$ then $||f + g||_2 \le ||f||_2 + ||g||_2$ (Triangle inequality)