

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS - 2021/2022 ACADEMIC YEAR

THIRD YEAR FIRST SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF SCIENCE IN PHYSICS

COURSE CODE: SPC 313

COURSE TITLE: MATHEMATICAL PHYSICS I

EXAM DURATION: 2 HOURS

DATE: 23/05/2022 TIME: 9:00AM-11:00AM

INSTRUCTIONS TO CANDIDATES

- Answer QUESTION ONE (Compulsory) and any other two (2) Questions.
- Indicate answered questions on the front cover.
- Start every question on a new page and make sure question's number is written on each page.
- Symbols have their usual meaning.

QUESTION ONE (30 MARKS)

- (a) If A = 2i + j 3k and B = 3i 2j + 2k find
 - 1) (3A-2B)-2(3B-2A) (2 marks)
 - 2) (6A). (B) (3 marks)
 - 3) $3A \times 2B$ (3 marks)
- (b) What is the angle between $\hat{i} 2k$ and $\hat{i} + 3\hat{j}$ (4 marks)
- (c) Given that $\mathbf{u} = 4x^2\mathbf{i} y^3\mathbf{j} + z\mathbf{k}$, find
 - i. ∇u (2 marks)
 - ii. $\nabla \times u$ (3 marks)
- (d) Given that A = 3i j + 2k and B = 2i + 2j 3k, show that $A \cdot A \times B = 0$ (3 marks)
- (e) If $\vec{A} = \hat{\imath} + 2\hat{\jmath} \hat{k}$, $\vec{B} = \hat{\jmath} + \hat{k}$ and $\vec{C} = \hat{\imath} \hat{\jmath}$ show that $\vec{A} \times (\vec{B} \times \vec{C}) = -\vec{B} \vec{C}$
 - (5 marks)
- (f) Find the gradient of a potential V(r), if $V(r) = V(\sqrt{x^2 + y^2 + z^2})$ (5 marks)

QUESTION TWO (20 MARKS)

(a) A vector \mathbf{r} is in the x-y Cartesian coordinate. If \mathbf{r} has a fixed direction and the Cartesian coordinate is rotated in the counter-clockwise direction about z axis through angle q, such that we have x' - y' coordinate axes. By using a diagram show that:

$$x' = x \cos \theta + y \sin \theta$$

- $y' = -x \sin \theta + y \cos \theta \tag{4marks}$
- Hence show that **r** is invariant under rotation (3marks)
- (b) State Gauss' theorem (2marks)
- (c) Prove Gauss' theorem stated in 2(b) above (5marks)
- (d) One description of spin 1 particles uses the matrices $M_x = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$, $M_y = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$
 - $\frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \text{ and } M_z = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \text{ Show that } [M_x, M_y] = iM_z$ (6 marks)

QUESTION THREE (20 MARKS)

- (i) If $S(x, y, z) = (x^2 + y^2 + z^2)^{-3/2}$, find
 - (a) ∇S at the point (1, 2, 3) (4 marks)
 - (b) The magnitude of the gradient of S, $|\nabla S|$ at (1, 2, 3) (2 marks)
- (ii) Show that, $\nabla \cdot \nabla \times \mathbf{V} = 0$, if $V = V_x \hat{\imath} + V_y \hat{\jmath} + V_z \hat{k}$ (4 marks)
- (iii) Show that the gradient of any scalar field $\phi(r)$ is Irrotational (4 marks)
- (iv) One description of spin 1 particles uses the matrices $M_x = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, M_y = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$
 - $\frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \text{ and } M_z = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \text{ Show that } M^2 \equiv M_x^2 + M_y^2 + M_z^2 = 2I$ Where *I* is a unit matrix (6 marks)

QUESTION FOUR (20 MARKS)

- (i) Given that $x = \rho \cos \varphi$ and $y = \rho \sin \varphi$ for polar coordinate system. By using the Jacobian, find the area element of a polar coordinate system (7 marks)
- (ii) Given that $x = r \sin \theta \cos \varphi$, $y = r \sin \theta \sin \varphi$, and $z = r \cos \theta$ for spherical coordinate system. By using the Jacobian, find the area element of a spherical coordinate system

(iii) By using the Gauss elimination method, Solve 3x + 2y + z = 11,2x + 3y + z = 13,

 $x + y + 4z = 12 \tag{6marks}$

QUESTION FIVE (20 MARKS)

(i) A force is described by

 $\mathbf{F} = -\mathbf{i} + \mathbf{j} - 6\mathbf{k}$

(a) Calculate the divergence of F

(4 marks)

(b) calculate the curl of F

(6 marks)

(ii) A particle moving in a circular orbit is given by a vector $\mathbf{r} = i\mathbf{r}\cos\omega t + j\mathbf{r}\sin\omega t$. Evaluate $\mathbf{r} \times \dot{\mathbf{r}}$, where \mathbf{r} is the radius and ω is the angular velocity and both are constants

(4 marks)

(iii)Prove that: $\vec{A} \times (\vec{B} \times \vec{C}) + \vec{B} \times (\vec{C} \times \vec{A}) + \vec{C} \times (\vec{A} \times \vec{B}) = 0$

(6 marks)