

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2021/2022 ACADEMIC YEAR

FORTH YEAR FIRST SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND

BACHELOR OF SCIENCE

COURSE CODE:

MAA 412

COURSE TITLE:

PARTIAL DIFFERENTIAL EQUATIONS I

DATE: 24/05/2022

TIME: 2:00 PM - 4:00 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

- a) Form a partial differential equation associated with the primitive $z = f(x^2 + y^2)$. (4 marks)
- b) Solve the Lagrange's Linear Equation $(x^2 yz)p + (y^2 zx)q = z^2 xy$. (7 marks)
- c) By direct integration, solve $\frac{\partial^2 z}{\partial y^2} = z$; y = 0 then $z = e^x$, $\frac{\partial z}{\partial y} = e^{-x}$ (6 marks)
- d) By eliminating arbitrary functions, obtain the partial differential equation from: z = f(x + ct) + g(x ct). (8 mar
- e) Solve the non-linear partial differential equation of the form $x^2p^2 + y^2q^2 = z^2$. (5 mks)

QUESTION TWO [20 MARKS]

- (a) A Lagrange's Linear Partial differential equation is of the form $Pp + Qq = R \text{ , where } P, Q \text{ and } R \text{ are functions of } x, y, z \text{ and } p = \frac{\partial z}{\partial x}, q = \frac{\partial z}{\partial y}. \text{ Show that}$ its solution is given by f(u, v) = 0.
- (b) Using the method of Multipliers, find the complete solution of the differential equation $x(z^2 y^2) \frac{\partial z}{\partial x} + y(x^2 z^2) \frac{\partial z}{\partial y} = z(y^2 x^2)$ (8 marks)

QUESTION THREE [20 MARKS]

- (a) Find a complete integral of the partial differential equation $p(q^2 + 1) + (b z)q = 0$ by Charpit's method. (12 marks)
- (b) By eliminating arbitrary functions, obtain the partial differential equation from: $z = f(x + ct) + g(x ct). \tag{8 marks}$

QUESTION FOUR [20 MARKS]

- (a) Classify the partial differential equation $\frac{\partial^2 z}{\partial x^2} + x \frac{\partial^2 z}{\partial y^2} + \frac{\partial z}{\partial y} = 0.$ (6 marks)
- (b) Using the method of separation of variables, solve;

$$\frac{\partial u}{\partial x} = 2\frac{\partial u}{\partial t} + u$$
, when $u(x, 0) = 6e^{-3x}$. (14 marks)

QUESTION FIVE [20 MARKS]

- (a) Obtain solution for the wave equation $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$ such that $y = P_0 \cos pt$, $(P_0 \text{ is a constant})$ when x = l and y = 0 when x = 0.
- constant) when x = l and y = 0 when x = 0. (14 marks) (b) Solve $(w + y + z) \frac{\partial w}{\partial x} + (w + x + z) \frac{\partial w}{\partial y} + (w + x + y) \frac{\partial w}{\partial z} = x + y + z$ (6 marks)