

(Knowledge for Development)

KIBABII UNIVERSITY

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2021/2022 ACADEMIC YEAR
SECOND YEAR SECOND SEMESTER
MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE: STA 242/STA 221

COURSE TITLE: PROBABILITY AND DISTRIBUTION MODELS

DATE: 09/05/2022 **TIME**: 9:00 aM - 11:00 aM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 4 Printed Pages. Please Turn Over.

QUESTION ONE: (30 MKS)

a) Let x be a random variable with density function given by;

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x > 0 \\ 0 \text{ otherwise} \end{cases}$$

(3mks) Find the moment generating function of xi) (2mks)

the mean of xii) (3mks)

variance of xiii)

b) Two random variables x and y have the following j.p.d.f; determine if the random (8mks) variables are independent.

figure for the following function
$$f(x,y) = \begin{cases} 2-x-y & 0 < x < 1, \\ 0 & elsewhere \end{cases}$$

c) Let
$$f(x) = \begin{cases} 1 & 0 < x < 1, \\ 0 & elsewhere \end{cases}$$

If y = 3x,

(2mks) Find the Jacobean of the transformation i) (4mks)

obtain the distribution of y

d) A fair coin and die were tossed and rolled respectively, let the event that a head was ii) obtained be given by x and the event that a 6 was obtained be given by y, are the two (8mks) events independent?

QUESTION TWO: (20MKS)

Let x and y be continuous random variables with joint probability distribution function given by,

$$f(x,y) = \begin{cases} \frac{2}{3}(x+2y) & 0 < x < 1, 0 < y < 1 \\ 0 \text{ elsewhere} \end{cases}$$

Find;

			(2mks)
a)	E(x)		(2mks)
15	E(y)		(2mks)
c)	$E(x^2)$		(2mks)
d)	$E(y^2)$		(3mks)
e)	E(xy)		(2mks)
f)	cov(xy)		(2mks)
g)	var(x)		(2mks)
h)	var(y)		

i) Correlation coefficient of x and y
 j) Are the random variables independent? (2mks)

QUESTION THREE: (20 MKS)

Let $y_1, y_2, y_3, ..., y_n$ be in a real product space; consider y_1, y_2 and y_3 with joint probability distribution function given by;

$$f(y_1, y_2, y_3) = \begin{cases} \frac{1}{(2\pi)^{\frac{3}{2}}} e^{\frac{-1}{2}(y_1^2 + y_2^2 + y_3^2)} & -\infty < y_1 < \infty, \\ -\infty < y_2 < \infty \\ -\infty < y_3 < \infty \end{cases}$$

$$0 \ else \ where$$

Find the;

b)

a) Marginal density function of

i)	$f(y_1)$		(2mks)
ii)	$f(y_2)$		(2mks)
iii)	$f(y_3)$	ž	(2mks)
Conc	ditional density function of		
i)	$f(y_1/y_2, y_3)$		(2mks)
7.0	77 7 3		(0 1)

ii)
$$f(y_2/y_1, y_3)$$
 (2mks)
iii) $f(y_3/y_1, y_2)$ (2mks)
i) $E(y_1/y_2, y_3)$ (2mks)

ii)
$$E(y_2/y_1, y_3)$$
 (2mks)
iii) $E(y_3/y_1, y_2)$ (2mks)

c) Determine if y_1, y_2, y_3 are stochastically independent. (2mks)

QUESTION FOUR: (20MKS)

Let x and y have the following joint distribution

$X \downarrow Y \rightarrow$	-3	2	4	Totals
1	0.1	0.2	0.2	0.5
3	0.3	0.1	0.1	0.5
Total	0.4	0.3	0.3	1

Find;

- i) The distribution of x and y (4mks)
- ii) The covariance of x and y (8mks)
- iii) The correlation coefficient of x and y (6mks)
- iv) Are the random variables independent? explain (2mks)

QUESTION FIVE: (20MKS)

(a) Find the moment generating function a gamma density function defined as

$$f(x) = \frac{\lambda^{\eta}}{\Gamma(\eta)} x^{\eta - 1} e^{-\lambda x}; \quad x \ge 0$$
 (6mks)

- (b) Using the moment generating function obtained in (a) above and assuming $\eta = 1$ and λ as 0.025 find the mean and standard deviation of density function (8mks)
- (c) Show that

$$m_x(t) = \frac{1}{(1 - \beta t)^{\alpha}}$$

for a continuous density function

$$f(x) = \frac{1}{\beta \Gamma(\alpha)} x^{\alpha - 1} e^{-\frac{x}{\beta}}; \quad x \ge 0$$
 where $\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx$ (6mks)