

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2021/2022 ACADEMIC YEAR
FIRST YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF MASTER OF SCIENCE IN PURE MATHEMATICS

COURSE CODE: MAT 822

COURSE TITLE: ABSTRACT INTEGRATION II

DATE! 23/05/2022 **TIME**: 9:00 AM - 11:00 AM

INSTRUCTIONS TO CANDIDATES

Answer any THREE Questions

TIME: 2 Hours

QUESTION ONE (20 MARKS)

- a) Define the following terms
 - i. Rectangle in $X \times Y$
 - ii. Sections in $X \times Y$

b)

- i. State the lemma on monotone classes
- ii. State the unique extension theorem
- iii. State the monotone convergence theorem
- c) Given ρ is a ring of subsets of X, \mathcal{J} a ring of subsets of Y and let R be a ring generated by the class of all rectangles $E \times F$ where $E \in \rho$ and $F \in \mathcal{J}$, show that R coincides with the class of all finite disjoint unions $M = \bigcup_{i=1}^n E_i \times F_i$ where $E_i \in \rho$ and $F_i \in \zeta$

QUESTION TWO (20 MARKS)

- a) Define the following terms
 - i. The x-section of a mapping
 - ii. The y-section of a mapping
- b) Show that if M is any subset of $X \times Y$ then $(\chi_M)_x = \chi_{M_X}$ and $(\chi_M)^y = \chi_M y$ for all $x \in X$ and $y \in Y$
- c) Given that h is measurable with respect to $\rho \times \mathcal{I}$ show that for each $x \in X$ the function h_x is measurable with respect to \mathcal{I} and for each $y \in Y$ the function h^y is measurable with respect to ρ

QUESTION THREE (20 MARKS)

- a) Given $G \in \rho$ and consider the measure space X, ρ, μ_G where μ_G is the contraction of μ by G, suppose that $f: X \to R$ is integrable with respect to μ_G and that f = 0 on X G. show that f is also integrable with respect to μ and $\int f d\mu = \int f d\mu_G$
- b) Suppose $M \subseteq P \times Q$ where M is in $\rho \times \mathcal{I}$ and $P \times Q$ is a finite rectangle. Let $h = \chi_M$, show that;
 - i. for each $x \in X$ one has $h_x \in L'(\mu)$ and $\int h_x d\mu = f_M(x)$
 - ii. for each $y \in Y$ one has $h^y \in L'(\mu)$ and $\int h^y d\mu = g^M(y)$

- iii. Moreover the functions h, f_M and g^M are integrable and $\pi(m) = \int h \, d\pi = \int f_M \, d\mu = \int g^M \, d\mu$
- c) Suppose M is in $\rho \times \mathcal{I}$ show that the following conditions are equivalent
 - i. $\pi(M) < \infty$
 - ii. There exists an $f \in L'(\mu)$ such that $f_M = f$ a.e. [u]
 - iii. There exists a $g \in L'(v)$ such that $g^M = g$ a.e. [v] in this case, $\int f d\mu = \int g dv = \pi(M)$

QUESTION FOUR (20 MARKS)

- a) Define the following terms
 - i. Absolutely continuous function
 - ii. A signed measure
 - iii. Dominated measure
- b) Given (X, ρ, μ) is a finite measure space and v is a finite measure on ρ such that $v \ll \mu$, show that there exists an $f \in L'(u)$ such that $v = u_f$ and $f \ge 0$ show also that if $g \in L'(v)$ such that $v = u_g$ then g = f a. e. [u]

QUESTION FIVE (20 MARKS)

- a) Given v is a finite signed measure on ρ , Show that
 - i. $|v(E)| \le |v|(E)$ for every measurable set E
 - ii. v = 0 if and only if |v| = 0
 - iii. $v^+ \ll |v|$ and $v^- \ll |v|$
 - iv. If μ is a measure on ρ then $|v| \ll \mu$ if and only if both $v^+ \ll u$ and $v^- \ll u$
- b) Suppose (X, ρ, μ) is a σ finite measure space and v is a finite signed measure on ρ . Show that the following are equivalent
 - i. $v \ll \mu$
 - ii. |υ| ≪ μ
 - iii. $v^+ \ll \mu$ and $v^- \ll \mu$
 - iv. ν is AC with respect to μ
 - v. |v| is AC with respect to μ
 - vi. $\mu(E) = 0$ implies v(E) = 0
 - vii. There exists an $f \in l'(\mu)$ such that $v(E) = \int_E f d\mu$ for every measurable set E. In this case, f is unique almost everywhere $[\mu]$