

(Knowledge for Development)

KIBABII UNIVERSITY UNIVERSITY EXAMINATIONS

2021/2022 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION

COURSE CODE: MAA 225

COURSE TITLE: COMPLEX ANALYSIS I

DATE: 19/05/2022 **TIME**: 2:00 PM - 4:00 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

QUESTION ONE (30 MARKS)

- a) Define and give an example of following types of singularities
- (i) Connectedness (2 mks)
- (ii) Neighborhood (2 mks)
- (iii) Limit point (2 mks)
- (iv) Point set (2 mks)
- (v) Complex function (2 mks)
- (b) Convert the following into polar co-ordinates
- (i) z = 3 + 2i (3 mks)
- (ii) z = -2 + 3i (3 mks)
- (c)(i)State De-moivres theorem and use it to prove that $\cos 3\alpha = \cos^3 \alpha 3\cos \alpha \sin^2 \alpha$ and $\sin 3\alpha = 3\cos^2 \alpha \sin^3 \alpha$ (6 mks).
- (ii) Solve the equation $x^4 = 1$. (8 mks)

QUESTION TWO (20 MARKS)

(i) Show that for the complex variable z , the following formula is valid;

$$\cos^2 z + \sin^2 z = 1 \ (8 \text{ mks})$$

- (ii) Prove that $sin(z_1 + z_2) = sinz_1cosz_2 + cosz_1sinz_2$ (8 mks)
- (iii) Using the definition of Limit ,show that;

$$Lim_{z\to i}(7z-1) = 7i - 1$$
 (4 mks)

QUESTION THREE (20 MARKS)

- (a) (i) Let $W=f(z)=z^2$, find the value of W which corresponds to z=-2+i and show the correspondence can be represented graphically . (5 mks)
- (ii) Prove that $1 \tanh^2 z = \operatorname{sech}^2 z$ (5 mks)
- (b) Show whether the following functions are analytic or not in the entire complex plane;

(i)
$$W = e^z$$
 (5 mks)

(ii)
$$f(z) = x^2 - y^2 + i(3x^2y - y^3)$$
 (5 mks)

QUESTION FOUR (20 MARKS)

- (a) Evaluate $\int_{0,3}^{2,4} (2y + x^2) dx + (3x y) dy$ along
- (i) The parabola x=2t , $y=t^2+3$ (6 mks)
- (ii) Straight lines from (0,3) to (2,3) and then from (2,3) to (2,4) . (5 mks)
- (iii) Straight line from (0,3) to (2,4) . (5 mks)
- (b) Define the following terms;
- (i) Simply connected (2 mks)
- (ii) Multiply connected (2 mks)

QUESTION FIVE (20 MARKS)

- (a) Evaluate $\oint_c (5x + 6y 3)dx + (3x 4y + 2)dy$ around a triangle in the xy plane with vertices at (0,0) and (4,3). (10 mks)
- (b)Prove that the series $z(1-z)+z^2(1-z)+z^3(1-z)+\dots$ converges for |z|<1 and find its sum. (10 mks)