

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2021/2022 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND BACHELOR OF SCIENCE

COURSE CODE:

MAP 212/MAP 222

COURSE TITLE:

REAL ANALYSIS I

DATE:

10/05/2022

TIME: 2:00 PM - 4:00 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

QUESTION ONE (30 MARKS)

a) Define the following terms:

(i)	Open neighbourhood	(2 marks)
(ii)	Countable set	(2 marks)
(iii)	Inverse of a function	(2 marks)
(iv)	Bounded set	(2 marks)
(v)	Rational function	(2 marks)

- b) Show that the empty set Ø is always open. (5 marks)
- c) Give 3 conditions that need to be satisfied for a function f(x) to be continous at a point. (3 marks)
- b) Show that if $a, b \in \mathbb{R}$ such that $a \le b + \varepsilon$ for every $\varepsilon > 0$, then $a \le b$ (3 marks)
- e) If $x \in \mathbb{R}$ and $x \neq 0$. Show that $x^{-1} > 0$ iff x > 0. (5 marks)
- f) Show that if T is anon empty set of areal number with Sup say b, then for all element $a < b \exists x \in T$ such that $a < x \le b$ (5 marks)

QUESTION TWO (20 MARKS)

a) Define the following terms:

(i)	Open set	(3 marks)
(ii)	Interior point	(5 marks)

- b) Show that if $\{E_{\alpha}: \alpha \in \Lambda\}$ is any family of closed subsets of X with respect to (X, f), then $\bigcap E_{\alpha}$ is closed in (X, f). (7 marks)
- c) Show that Ø, X are always closed in (X, f). (5 marks)

QUESTION THREE (20 MARKS)

Let A, B, C be subsets of a universal set U. Show that:

(i) A-(B \cup C) = (A-B) \cap (A-C)

(6 marks)

(ii) If A = B then $(A \subseteq B) \land (B \subseteq A)$

(4 marks)

(iii) $(A \cup B)^c = A^c \cap B^c$

(10 marks)

QUESTION FOUR (20 MARKS)

- a) Show that if x and y are positive real numbers (x, y $\in \mathbb{R}$) then x < y iff $x^2 < y^2$ (8 marks)
- b) Show that if $(a, b \in \mathbb{R})$ then $|a| \le b$ iff -b < a < b (6 marks)
- c) Show that if $(a, b \in \mathbb{R})$ then $|a+b| \le |a| + |b|$ (6 marks)

QUESTION FIVE (20 MARKS)

a) Let A and B be non-empty sets of real numbers. Let C be the set such that $c = \{x + y : x \in A \text{ and } y \in B\}.$

Show that if A and B have supremums then C also has a supremum and

$$Sup C = Sup A + Sup B$$

(10 marks)

- b) Considering the function $f(1, -\infty) \rightarrow (0, 1)$ defined by $f(x) = \frac{x-1}{x+1}$, show that f posses an inverse $f^{-1} = \frac{y+1}{y-1}$, (6 marks)
- c) Let $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \frac{x^2 1}{x^2 + 1}$ and $g: \mathbb{R} \to \mathbb{R}$ defined by $g(x) = x^3$. Find g. f(x) (4 marks)