

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2021/2022 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF MASTER OF SCIENCE IN PURE

MATHEMATICS

COURSE CODE: MAT830

COURSE TITLE: REPRESENTATION THEORY OF GROUPS

DATE!

24/05/2022

TIME: 9 AM - 12 AM

INSTRUCTIONS TO CANDIDATES

Answer Any THREE Questions

TIME: 3 Hours

This Paper Consists of 5 Printed Pages. Please Turn Over.

QUESTION ONE (20MARKS)

- a) Let G be a finite group and F field. Explain what is meant by the following terms;
 - i. A representation of G over F
 - ii. An irreducible representation
 - iii. The degree of a representation
 - iv. Decomposable representation
- b) Using the natural basis $\{v_1, v_2, v_3\}$ write down the 3-dimensional permutation representation of $G \cong S_3$ (It is enough to give the matrices on the generators of the group)
- c) State Marschke's theorem
- d) For this question, G is a group of order 20 with 5 conjugacy classes. Here are the first two lines of its character table

	1	g_2	g_3	g_4	g_5
ccl	1	4	5	5	5
χ_1	1	1	1	1	1
χ_2	1	1	i	-1	-i

- What are the dimensions (degrees) of the remaining representations of G? justify.
- ii. Find another 1-dimensional representation of G

QUESTION TWO (20MARKS)

- a) Given T as a representation;
 - i. Define a T-invariant subspace
 - ii. Show that kerT(g) is T-invariant for all $g \in G$.
- b) Let G be a finite group with two representations T and T^I on V.
 - iii. Define what is meant by T is equivalent to T^I
 - iv. Show that if S and T are equivalent F-representations with characters χ and ψ respectively then $\chi=\Psi.$
- c) Let G be any finite group, $G = \{g_1, \dots, g_n\}$ and V a vector space over a field F. Choose an ordered basis $\{v_1, \dots, v_n\}$ and define $T(g_i)v_j = vk$ if $g_ig_j = gk$. Show that T is a representation of G over V.
- d) Let $G = S_3$ and $X = \{1,2,3\}$.
 - i. Find the (matrix) permutation representation of S_3 (enough to give the matrices of the of the generators.
 - ii. What is the degree of this representation?

QUESTION THREE (20MARKS)

- a) Define the term character of a representation T.
- b) Show that characters are class functions
- c) Suppose that the char F \neq |G|. If χ_1 and χ_2 are F- characters of G. Define the inner product $<\chi_1,\chi_2>$
- d) Compute the character table of S_3 the symmetric group.
- e) Consider the class function $\phi: S_3 \to \mathbb{C}$ defined by $\varphi(e) = 4$, $\varphi(12) = 0$, $\varphi(123) = 0$
 - -5. write down ϕ as a linear combination of irreducible characters of S_3 .

QUESTION FOUR(20MARKS)

a) Let G be a group acting on a set X. Define a transitive action.

State the orbit-stabilizer theorem

- b) Let G be the alternating group $A_4 \subset S_4$. There are 4 conjugacy classes in A_4 with representations I, (123), (132), (12)(34) and sizes 1,4,4,3 respectively.
 - i. Find the number of irreducible representations and their dimensions (degrees).
 - ii. $\chi_4: G \to \mathbb{C}$ be the function which is constant on each cycle type and takes the values $\chi_4(1) = 3$, $\chi_4(123) = \chi_4(132) = 0$ and $\chi_4((12)(34)) = -3$. Using the permutation character, show that χ_4 is a char of A_4 . Prove that it is irreducible.
 - iii. The character table now looks like

	1	(123)	(132)	(12)(34)
	1	4	4	3
χ_1	1	1	1	1
χ_2	3	0	0	-1
χ_3	1	a	b	c
- X4	1	d	e	f

Use orthogonality relations to show that c = f. i.e find the values of c & f.

- a) What is meant by the character table of a group.
- b) State the row and column orthogonality relations for a character of a representation
- c) Let $\phi=\{\pm 1,\pm i,\pm j,\pm k\}$ be the quarternion group of order 8 with the usual relations $-1^2=1$, $i^2=j^2=k^2=-1$, ij=-ji=k, jk=-kj=I, ki=-ik=j. ϕ has 5 conjugacy classes viz 1, -1, $\{I,-I\}$, $\{j,-j\}$ and $\{k,-k\}$. Compute the character table of ϕ . Find the centre of the group ϕ .
- d) There is a representation of φ . $\rho: \varphi \to GL_2(\mathbb{C})$ defined by $\rho(i) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $\rho(j) = \begin{pmatrix} \xi & 0 \\ 0 & \xi \end{pmatrix}$
 - i. Compute $\rho(-1)$ and $\rho(k)$
 - ii. Show that ρ is irreducible.