

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2021/2022 ACADEMIC YEAR
FORTH YEAR FIRST SEMESTER
MAIN EXAMINATION
FOR DEGREE OF BACHELOR OF
SCIENCE MATHEMATICS

COURSE CODE: MAP 413

COURSE TITLE: FUNCTIONAL ANALYSIS

DATE: 17/05/2022

TIME: 9:00 AM - 11:00 AM

INSTRUCTIONS TO CANDIDATES

Answer question ONE and any other two questions

TIME: 2 Hours

QUESTION ONE (30 MARKS)

- a) Define a metric space
- b) Show that the three-dimensional space \mathbb{R}^3 with the distance

$$d(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + (x_3 - y_3)^2}$$
 is a metric space

c) Show that the space $(\mathcal{L}^{\infty}, d)$ with d defined by $d(x, y) = \sup_{j \in \mathbb{N}} |x_i - y_j|$ is a metric space

OUESTION TWO (20 MARKS)

- a) Show that the following
 - i. Holder's inequality for sums $\sum_{j=1}^{\infty} |x_j y_j| \le \left(\sum_{j=1}^{\infty} |x_j|^p\right)^{\frac{1}{p}} \left(\sum_{j=1}^{\infty} |y_j|^q\right)^{\frac{1}{q}}$
 - ii. Minkowski inequality for sums $(\sum_{j=1}^{\infty} |x_j + y_j|^p)^{\frac{1}{p}} \le (\sum_{j=1}^{\infty} |x_j|^p)^{\frac{1}{p}} + (\sum_{j=1}^{\infty} |y_j|^p)^{\frac{1}{p}}$
- b) Show that the sequence space \mathcal{L}^p with d defined by $d(x,y) = (\sum_{j=1}^{\infty} |x_j y_j|^p)^{\frac{1}{p}}$ is a metric space

QUESTION THREE (20 MARKS)

- a) Show that the space \mathcal{L}^{∞} is not separable
- b) Show that the space \mathcal{L}^p $1 \le p \le \infty$ is separable
- c) Show that a subspace M of a complete metric space X is itself complete if and only if the set M is closed in X

QUESTION FOUR (20 MARKS)

- a) Show that the Euclidean space \mathbb{R}^n is complete
- b) Define the following terms
 - i. Normed space
 - ii. Banach space
- c) Show that a metric d induced by a norm on a normed space X satisfies

i.
$$d(x+a,y+a) = d(x,y)$$

ii.
$$d(ax, ay) = |a|d(x, y)$$

QUESTION FIVE (20 MARKS)

- a) Given $\{x_1, x_2, ..., x_n\}$ are a linearly independent set of vectors in a anormed space X (of any dimension) show that there is a number c > 0 such that for every choice of scalars $\alpha_1, ..., \alpha_n$ we have $||\alpha_1 x_1 + \cdots + \alpha_n x_n|| \ge c(|\alpha_n| + \cdots + |\alpha_n|)$
- b) Show that a compact subset M of a metric space is closed and bounded
- c) Define a linear operator T