

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2021/2022 ACADEMIC YEAR

FOURTH YEAR FIRST SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE
(MATHEMATICS)

COURSE CODE: STA 411

COURSE TITLE: TIME SERIES ANALYSIS

DATE: 23/05/2022 **TIME**: 2:00 PM - 4:00 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 4 Printed Pages. Please Turn Over.

QUESTION 1: (30 Marks)

a) Explain the following terms as used in time series analysis:

i)	Stationary process		[1mk]
ii)	Stationarity in the weak sense		[1mk]
iii)	Moving average process		[lmk]
iv)	Autoregressive process		[1mk]
v)	White noise process		[lmk]

- b) Find the auto covariance function $(\sigma(h))$ and the autocorrelation function $(\rho(h))$ of a moving average process of order q (MA(q)). [8mks]
- c) Consider autoregressive process of order 1 (AR (1)) given by $X_t = \alpha X_{t-1} + e_t$, where \propto is a constant.
 - i) If $|\alpha| < 1$, show that X_t may be expressed as infinite order of a MA process.

[4mks]

- ii) Find its auto-covariance function $(\sigma(h))$ and its autocorrelation function $(\rho(h))$. [3mks]
- d) Transform a time series $\{X_t\}$ into another series $\{Y_t\}$ where $Y_t = \sum_{j=-\infty}^{\infty} a_j X_{t-j}$ and $X_t = e^{i\lambda t}$ and state the changes in its amplitude, wavelength and phase angle.

[5mks]

e) Find the spectral density function of an AR (1) process given by $X_t = \alpha X_{t-1} + e_t$, where $|\alpha| < 1$ [5mks]

QUESTION 2: (20 Marks)

- a) Suppose we have data up to time $n(x_1, x_2, ..., x_n)$
 - i) Show that minimum mean squared error forecast of x_{n+k} is the conditional mean of x_{n+k} at time n. i.e. $\hat{x}(n,k) = E(x_{n+k}/x_1, x_2, ..., x_n)$ [6mks]
 - ii) Consider the AR(1) model $X_t = \propto X_{t-1} + e_t$, $|\propto| < 1$. Forecast x_{n+3} . [2mks]
- b) Transform a moving average filter $\{X_t\}$ into another series $\{Y_t\}$ by the linear operator given that

$$X_t = e^{i\lambda t}$$
 and $Y_t = \sum_{j=-\infty}^{\infty} a_j X_{t-j}$

Where

$$a_{j} = \begin{cases} \frac{1}{2m+1}, & j = 0, \ \mp 1, \ \mp 2, \dots, \ \mp m \\ 0, & otherwise \end{cases}$$
 [12mks]

QUESTION 3: (20 Marks)

a) Consider an AR(1) process with mean μ given by $X_t - \mu = \alpha(X_{t-1} - \mu) + e_t$, t = 1, 2, 3, ...

Find the estimates of the parameters α and μ using the method of least squares.

[8mks]

b) Consider a second order process AR (2) given by

$$X_t = \frac{1}{3}X_{t-1} + \frac{2}{9}X_{t-2} + e_t.$$

Show that this process is stationary and hence obtain its ACF

[12mks]

QUESTION 4: (20 Marks)

a) i) Briefly describe the main objectives in the analysis of a time series.

[3mks]

- ii) State the unique feature that distinguishes time series from other branches of statistics. [1mk]
- iii) Identify the main stages in setting up a Box-Jenkins forecasting model.

[4mks]

b) Show that the AR(2) process given $X_t = X_{t-1} - \frac{1}{2}X_{t-2} + e_t$ is stationary and hence find its ACF. [12mks]

QUESTION 5: (20 Marks)

- a) If an observed values $(X_1, X_2, ..., X_n)$ on a discrete time series forms n-1 pairs of observation $(X_1, X_2), (X_2, X_3), ..., (X_{n-1}, X_n)$ regarding the first observation in each pair as one variable and second observation as a second variable Find:
 - i) The correlation coefficient r_1 between X_t and X_{t-1}

[5mks]

ii) The correlation between observations at a distance k apart.

[2mks]

- b) Consider an AR(2) process given by $X_t = \alpha_1 X_{t-1} + \alpha_2 X_{t-2} + e_t$. Write down the Yule-Walker equations and hence, find the first two values of autocorrelation functions $\rho(1)$ and $\rho(2)$ if $\alpha_1 = 0.75$ and $\alpha_2 = -0.25$ [6mks]
- c) Consider a moving average process given by $X_t = e_t + \beta e_{t-1}$, where $(\beta_0 = 1, \beta_1 = 1)$.

Find its spectral density function.

[7mks]