



## **KIBABII UNIVERSITY**

## UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

## FOURTH YEAR FIRST SEMESTER MAIN EXAM

FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE: SCH 41

**COURSE TITLE:** 

STATISTICAL THERMODYNAMICS

DATE: 23/05/2022

TIME: 9:00AM-11:00AM

| 1. a) Define the following terms as used in statistical thermodynamics                        | (5 marks)                |
|-----------------------------------------------------------------------------------------------|--------------------------|
| (i) Ensemble                                                                                  |                          |
| (ii) Thermodynamics                                                                           |                          |
| (iii) Microstate                                                                              |                          |
| (iv) Partition function                                                                       |                          |
| (v) Phase space                                                                               |                          |
| b). What is the enthalpy of 1 mole of an ideal monatomic gas?                                 | (3 marks)                |
| c). Differentiate between classical and statistical thermodynamics                            | (6 marks)                |
| d). Give four application of statistical thermodynamics                                       | (4 marks)                |
| e). State three types of partition function as used in statistical thermodynamics             | (3 marks)                |
| f). Calculate the number of ways of distributing 20 identical objects with the $1,0,3,5,10,1$ | arrangement<br>(4 marks) |
| g). What is principle of equal a priori (2marks)                                              | probability              |

(2 marks)

- h). A part from using factorial in the calculation of the number of weight of identical objects derive the starlings approximation, expression for the weights (3 marks)
- 2.a) Explain the differences among the three types of distribution as used in statistical thermodynamics. (9 marks)
  - b). You have six distinguishable particles and two energy levels one with a degeneracy of two and the other with degeneracy of five. Calculate the number of microstates in this system (11 marks)
- 3.a) Derive all the four Maxwell Thermodynamical relations using the differential form of the equations of U, H, A and G (10 marks)
- b). State and explain the three types of ensembles as used in statistical thermodynamics (10 marks)
- 4 a). What is meant by molecular partition function
- b). Derive relationships between the following partition function and thermodynamic functions. (12 marks)
  - i. Partition function and heat capacity at constant volume
  - ii. Partition function and heat capacity at constant pressure
  - iii. Partition function and internal energy
- c). Explain three important properties of macroscopic system that distinguishing the from microscopic systems (6 marks)
- 5. a). Calculate the molar Gibbs energy of Ar at 298.18 K and 10<sup>5</sup> pa, assuming that the gas demonstrates ideal behavior (8 marks)
- b). For an ensemble consisting of 1.00 moles of particles having two energy levels separated by  $hv = 1.00 * 10^{-20} J$ , at what temperature will the internal energy of this system equal 1.00 kJ? (8 marks)
- c). What thermodynamic properties can be obtained from the partition function? (4marks)