

(Knowledge for Development)

KIBABII UNIVERSITY (KIBU)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS

END OF SEMESTER EXAMINATION

2021/2022 ACADEMIC YEAR

THIRD YEAR FIRST SEMESTER EXAMINATION

FOR THE DEGREE OF BACHELORS OF SCIENCE IN

(COMPUTER SCIENCE)

COURSE CODE: CSC 312

COURSE TITLE: DESIGN AND ANALYSIS OF ALGORITHMS

DATE: 20/05/2022 TIME: 9.00 A.M. – 11.00 A.M. 2HRS

INSTRUCTIONS TO CANDIDATES:

ANSWER QUESTIONS ONE AND ANY OTHER TWO.

Paper Consists of 5 Printed Pages. Please Turn Over Page 1 of 5

QUESTION ONE (COMPULSORY) [30 MARKS]

a. Why do we require the understanding of complexity theory when handling computational problems?

[3 marks]

b. Suggest two ways in which sequential search algorithm can be improved.

[2 marks]

c. Explain the control abstraction of divide and conquer technique

[2 marks]

d. i. Simulate the running time of a binary search.

[4 marks]

ii. You are given the following array elements in Table 1 below.

Table 1: Array Elements in Computer Memory

1	4	5	7	8	9	10	23	25	27	30	32	41
								The second secon				

Provide an algorithm for searching a value x=100 using binary search. Estimate the best case and 3 marks the worst case scenarios of the algorithm.

Define the meaning of a spanning Tree and a Minimum Spanning Tree (MST).

[3 marks]

- [3 marks] ii. How will you find MST using prim's algorithm and Kruskal's algorithm?
- **b.** The code to compute the matrix product C = A * B is given below.

for
$$(i = 1; i <= n; i++)$$
 n
for $(j = 1; j <= n; j++)$ n
 $C[i, j] = 0; 1$ n*n
for $(k = 1; k <= n; k++)$ n
 $C[i, j] = C[i, j] + A[i, k] * B[k, j]; (n*n*n)$

Compute the running time of the code.

[4 marks]

- c. Explain the application of the following algorithms:
 - Branch and Bound Algorithm i.

2 marks

ii. Randomized Algorithm [2 marks]

Backtracking Algorithm iii.

2 marks

QUESTION TWO [20 MARKS]

a. Using limits show that $f(n) = 4n^3 + 10n^2 + 5n + 1$ is in $g(n) = n^4$

[2 marks]

- b. Explain the assignment problem. How will you solve the assignment problem using [4 marks] optimization techniques? Illustrate briefly.
- c. How will you classify a given problem as P and NP type? Discuss the available methods to solve NP problems. [4 marks]
- d. Consider a knapsack of capacity, W=65 and the list of provided items as in the Table 1 below.

Table 1: Items to be added in the Knapsack

Items	A	В	C	D
Profits	180	100	120	120
Weights	40	10	20	24

Compute the optimized solution or maximum profit in the knapsack using:

i. Greedy strategy

[4 marks]

ii. Dynamic programming approach

[4 marks]

iii. Which strategy will you prefer? Justify.

[2 marks]

QUESTION THREE [20 MARKS]

- a. Discuss the applicability of design and analysis of an algorithm to a computer science student.
- **b.** Discuss branch and bound method with an example.

[3 marks]

- c. Discuss the basic NP-complete problems showing their transformation topology.[3 marks]
- d. Let M be a deterministic Turing Machine (TM) that halt on all inputs. Space complexity of M is a function f: N→N, where f (n) is the maximum number of call of tape and M scans any input of length n. if the space complexity of M is f (n), then M runs in space f (n). Estimate the space complexity of TM using asymptotic notation. [3 marks]
- e. Discuss Prism's algorithm and use it to estimate the minimum cost of the network diagram in Figure 1. [3 marks]

Figure 1: Network Diagram 1.

i. Consider the following recursive algorithm for computing the sum of the first n cubes.

 $S(n)=1^3+2^3+3^3+\ldots+n^3$ Algorithm S(n)If (n=1) return 1 Else return (S (n-)+ n*n*n)) end algorithm

Set up and solve a recurrence relation for the number of times the basic operation of the algorithm is executed. [4 marks]

QUESTION FOUR [20 MARKS]

a. Explain important fundamental problem type of different categories.

[4 marks]

b. Explain in brief the basic asymptotic efficiency class

[4 marks]

c. Explain the method of comparing the order of growth of two functions using limits.

[4 marks]

d. Consider the graph shown in Figure 2 below.

Figure 2: Network Diagram 2.

- e. Using appropriate algorithms:
- ii. Construct the minimum Spanning Tree (MST).

[4 marks]

iii. Single source shortest path from node a to e.

[4 marks]

QUESTION FIVE [20 MARKS]

- a. Discuss various factors that may affect the running time of a computer program. [3 marks]
- **b.** Describe how the following algorithms work.
 - i. Randomized algorithm

[3 marks]

ii. Approximation algorithm

[3 marks]

c. Apply Branch and Bound algorithm on the Figure 3 below to solve the Traveling Salesman problem.
[3 marks]

Figure 3: Network Diagram 3.

- d. i. Software packages A and B of complexity O (n log n) and O(n), respectively spend exactly TA (n)= CA n log n and TB (n) = CB n milliseconds to process n data items. During a test, the average time of processing n = 10000 data items with packages A and B is 100 milliseconds and 1500 milliseconds, respectively. Derive exact conditions when one package actually outperforms the other and recommend the best choice if up to n=109 data items should be processed.
 [4 marks]
 - ii. Software packages A and B have processing time of exactly $T_A = 3n^{-1.5}$ and $T_B = 0.03n^{-1.75}$, respectively. If you are interested in faster processing of up to $n = 10^8$ data items, then which package should you recommend? [4 marks]