

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

END OF SEMESTER EXAMINATIONS YEAR TWO SEMESTER TWO EXAMINATIONS

FOR DEGREE IN (COMPUTER SCIENCE)

COURSE CODE: CSC 220

COURSE TITLE: AUTOMATA THEORY

DATE: 13/5/2022

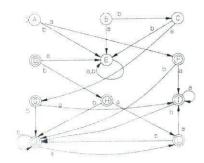
TIME: 02.00 P.M - 04.00 P.M

INSTRUCTIONS

ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS.

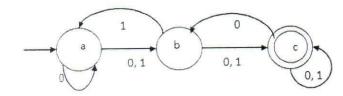
QUESTION ONE (COMPULSORY) [30 MARKS]

a) Define the following terms as used in automata theory.


[2Mks]

- i. DFA
- ii. NDFA
- b) Discuss the applications of Finite Automata.

[4Mks]


c) Given the following state diagram, draw its transitional table.

[6Mks]

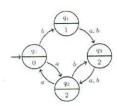
d) Convert the following NDFA to DFA?

[6Mks]

- e) Minimize the following DFA resulting from d) above using Equivalence Theorem showing tables after each step. [8Mks]
- f) Describe criteria used to decide on the equivalence of two states. [4Mks]

QUESTION TWO [20 MARKS]

a) Define the following terms.


[2Mks]

- i) Moore Machine (Mo)
- ii) Grammar
- b) Describe conditions that must be satisfied for a grammar to be in Type-1.

[4Mks]

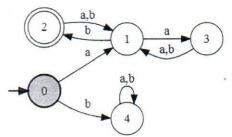
c) Convert the following Moore Machine to Mealy Machine.

[6Mks]

Page 2 of 4

d) Given Grammar G=({S},{0,1},S,{ $S \rightarrow 0S1S \mid 1S0S \mid \varepsilon$ }), show how you can derive String 1001101100 [4Mks]

QUESTION THREE [20 MARKS]

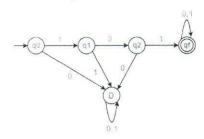

a) Explain the following concepts used in Automata Theory.

[2Mks]

- a. Regular Grammar
- b. Null Moves
- b) Give Regular Set generated by the following Regular Expression.

[4Mks]

- i) (a*b)*ab+bb
- ii) (0+1)*1(0+1)+(0+1)*1(0+1)(0+1)
- c) Arden's Theorem is used to find a regular expression of a finite automaton, using this theorem construct a regular expression corresponding to the following automata. [6Mks]


d) Construct a Finite Automaton from the following Regular Expression.

[4Mks]

$$(0+1)*1(0+1)+(0+1)*1(0+1)(0+1)$$

e) Find the complement of the following DFA.

[4Mks]

QUESTION FOUR [20 MARKS]

a) Explain the following terms as used in Automata Theory.

[4Mks]

- i) Context-free grammar
- ii) Sentential Form
- b) Let any set of production rules in a CFG $S \rightarrow 0S1S/1S0S/\epsilon$, generate Rightmost derivation of 1001101100 and draw equivalent derivation tree. [6Mks]

c) Remove Unit Productions from the following production rules.

[6Mks]

$$\begin{array}{ccc} S & \rightarrow & WX \\ W & \rightarrow & aWb \mid X \\ X & \rightarrow & XY \mid Z \\ Y & \rightarrow & cY \\ Z & \rightarrow & dZd \mid d \end{array}$$

d) Convert the following Grammar G to Chomsky Normal Form.

[4Mks]

$$S \to ABa \mid AC$$

 $A \rightarrow Ab \mid a$

 $B \rightarrow b \mid C \mid \lambda$

 $C \rightarrow aa \mid AA$

QUESTION FIVE [20 MARKS]

a) Define the following terms.

[2Mks]

- i) Push Down Automata (PDA)
- ii) Turing Machine(TM)
- b) Explain how context free language is accepted by PDA?

[8Mks]

- c) Show that L is recognized by Turing Machine with a two infinite tape if and only if it is recognized by a Turing Machine with a one way infinite tape. [8Mks]
- d) What is the purpose of studying Turing Machine?

[2Mks]