

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2016/2017 ACADEMIC YEAR

SPECIAL/SUPPLEMENTARY EXAMINATIONS YEAR FOUR SEMESTER TWO EXAMINATIONS

FOR THE DEGREE OF **BACHELOR OF SCIENCE COMPUTER SCIENCE**

COURSE CODE

: CSC 355E

COURSE TITLE

PARALLEL COMPUTER

ARCHITECTURE

DATE: 28/09/2017

TIME: 3:00 P.M - 5:00 P.M

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTIONS ONE AND ANY OTHER TWO.

QUESTION ONE-COMPULSORY (30marks)

a)	List the four classes of parallel computers according to Flynn's Taxonomy	[4 marks]	
	Briefly describe any three factors influencing parallel computing.	[6marks]	
c)	The late designer of increasing uniprocessors performance are nearly reaching		
	limits. Explain	[6 marks]	
d)	Briefly describe the following parallel programming models		
	i) Shared address space	[2 marks]	
	ii) Message passing	[2 marks]	
	iii) Data parallel programming	[2 marks]	
e)	State the importance of caches in high performance microprocessors	[2 marks]	
,			

[6 marks]

Using relevant diagrams, explain the working of any two cache schemes

QUESTION TWO (20marks)

a)	Explain any three desired characteristics of parallel systems	[6 marks]
b)	State any two advantages and two disadvantages of the distributed system multicomputers	
		[4marks]
c)	Discuss the following classes of Shared memory parallel multiprocessors i) Uniform Memory Access (UMA), ii) Non-Uniform Memory Access (NUMA) Using relevant diagrams illustrate the following types of multicore architects	[2 marks] [2 marks] ures
	i) Pipe-line design	[3 marks]
	ii) Hierarchical design	[3 marks]

QUESTION THREE (20mks)

a) What is memory contention in multiprocessors

[1mark]

b) Explain how memory contention is resolved in tightly coupled and loosely coupled multiprocessors

[4 marks]

c) Write short notes on the Following models for dynamically scheduled processors

Relaxing the Write-to-Read Program Order.

[2 marks]

Relaxing the Write-to-Read and Write-to-Write Program Orders.

[2 marks]

Relaxing All Program Orders

[2 marks]

d) In an experiment to determine performance of processors, the data in the table below are obtained. Use the values to answer questions 3 (d)(i & ii)

	Intel Pentium 4 2.4GHz Single-core	Intel Pentium 4 2.8GHz Single-core	Intel Pentium G640T 2.4GHz Dual-core
Number of Processes	38	38	38
CPU Usage	57%	40%	16%
Physical Memory	29% - 30% 611MB - 624MB	32% - 33% 620MB - 650MB	40% - 41% 795MB - 816MB
Maximum Frequency	100%	100%	60% - 69%
Time Taken to Copy files	1489 seconds	1446 seconds	1284 seconds
CPU Temperature Before Experiment	38°C	38°C	35°C
CPU Temperature After Experiment	41°C	41°C	39°C
Core Voltage	1.470volts	1.340volts	0.776volts
Maximum TDP	89W	89W	35W

i) Compare the performance of Intel Pentium IV 2.8GHz Single-core and Intel Pentium G640T 2.4GHz Dual-core systems in terms of speed in percentage [3 marks]

	ii) Determine speed-up for the set in d(i) above	[2 marks]		
e)	Differentiate between network switching and network routing	[4marks]		
QI	UESTION FOUR (20marks)			
a)	Define the following terms as used in caches			
	i) Snoop	[1 mark]		
	ii) Snarf	[1 mark]		
	iii) Dirty Data	[1 mark]		
	iv) Stale Data	[1 mark]		
b)	Using relevant illustrations, describe how the following protocols are used to achieve data			
	consistency in caches.			
	i) Snoopy bus protocol	[6 marks]		
	ii) Directory based protocol	[6 marks]		
c)	Explain why S-COMA is more cost-efficient than normal COMA.	. [4 marks]		
Qι	JESTION FIVE (20marks)			
a)	State major problems that complicate the task of multiprocessor design. [2 marks]			
b)	State any two ways of overcoming replication capacity problem [2 marks]			
c)	Explain the following common interconnection networks in multip	1000000000		
C)				
	*	marks]		
d)		marks]		
4)	Discuss the approaches to fatchey toterance	marks]		