

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2020/2021 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER

SPECIAL/SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION

MATHEMATICS

COURSE CODE:

MAA 121/MAT 102

COURSE TITLE:

FOUNDATION MATHEMATICS II

DATE:

30/09/21

TIME: 8.00 AM -10.00 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

- (a) Using examples define (4 mks)
 - (i) A diagonal matrix
 - (ii) A vector
- (b) If a = 2i 5j and b = i j + 2k evaluate $3b \cdot (a \times b)$ (5 mks)
- (c) Find the angle between two vectors -2i + 3j 7k and i 4j 6k (6 mks)
- (d) Find M if $(M^T 2I)^{-1} = \begin{bmatrix} -2 & -1 \\ 3 & 0 \end{bmatrix}$ (5 mks)
- (e) Given that $A = \begin{bmatrix} -2 & 6 & -6 \\ 3 & 1 & -4 \end{bmatrix}$ and $B = \begin{bmatrix} 9 & 6 \\ 4 & -1 \\ 7 & 0 \end{bmatrix}$ find $(-A + B^T)^T$ (3 mks)
- (f) Find the solution of the following system of linear equations using augmented matrices (7 mks)

$$2x + y + z = -1$$

$$2x + 4y + 2z = 0$$

$$3x - 2z = 5$$

QUESTION TWO (20 MARKS)

- (a) Given $a = \langle -3,1,2 \rangle$ and $b = \langle -4,3,1 \rangle$ compute
 - (i) $a \times b$ (3 mks)
 - (ii) $b \times -2a$ (4 mks)
- (b) If det A = 7 and det B = -8 calculate $det(A^2B^{-1}A^TB^3)$ (5 mks)
- (c) Compute the determinant of $\begin{bmatrix} -1 & -2 & -3 \\ 4 & 1 & 1 \\ -1 & 3 & 0 \end{bmatrix}$ (5 mks)
- (d) Determine if the two vectors are parallel, orthogonal or neither -3i j + 3k and 2i + 4j k (3 mks)

QUESTION THREE (20 MARKS)

(a) Use Cramer's rule to find x_1, x_2 , and x_3 ,

(10 mks)

(6 mks)

$$18x_1 + 2x_2 - 2x_3 = 2$$

$$5x_1 - x_2 + 5x_3 = 2$$

$$5x_1 + x_2 - x_3 = 4$$

(b) Compute the rank of
$$\begin{bmatrix} 2 & 3 & 0 & 5 \\ 1 & 2 & 1 & 1 \\ 3 & 5 & 1 & 4 \end{bmatrix}$$
(c) Given $A = \begin{bmatrix} -2b & 2b \\ -3 & b \end{bmatrix}$ has determinant of 9 find b

(4 mks)

QUESTION FOUR (20 MARKS)

(a) Find the inverse of the matrix $\begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ -6 & 2 & 3 \end{bmatrix}$ (10 mks)

(b) Compute the adjoint of P given

$$\begin{bmatrix} 18 & -3 & -2 \\ 0 & 1 & 5 \\ -2 & 0 & 7 \end{bmatrix}$$
 (10 mks)

QUESTION FIVE (20 MARKS)

(a) Find the projection of
$$2i - 2j + 7k$$
 on $-5i + j - 3k$ (4 mks)

(b) Show that
$$||a \times b|| = ||a|| ||b|| \sin\theta$$
 (5 mks)

(c) Given that
$$A = \begin{bmatrix} -1 & 2 \\ 5 & -3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 9 & -2 \\ 4 & -1 \end{bmatrix}$
Prove that $\det(AB) = \det A \det B$ (5 mks)

(d) Reduce the system into row-echelon form hence by backward substitution solve it

$$2x + 2y + 2z = 4$$
 (6 mks)
 $-x + 3y + 2z = 8$
 $4x + 5y + z = 6$